Click the green "Use this template" button at the top of the page, then choose "Create a new repository".
This will create your own copy of this project, which you can modify freely — no need to fork!
- Docker and Docker Compose installed (Docker files remain unchanged)
- VS Code with Dev Containers extension (optional)
# Make start.sh executable (if needed)
chmod +x start.sh
# Build and run the container
./start.shAlternatively:
docker-compose up --build -ddocker-compose psConfirm the container is up and port 8888 is mapped.
In the VS Code terminal (inside the container), run:
python scripts/generate_beta_binomial_data.pyYou should see the expected output (for example, confirmation message).
-
Open
notebooks/1_Intro_Beta_Binomial.ipynbin VS Code. -
In VS Code, install the following extensions:
Docker,Dev Containers,Python,Jupyter. -
VS Code will prompt you to select a kernel. Choose the Python kernel that is specified in the Dockerfile. The libraries that have been listed in the
requirements.txtand installed in the docker will be run automatically. -
Now you can run and edit cells directly in VS Code.
docker-compose down.
├── docs/ # Educational docs
│ ├── Beta-Binomial-Classification.md
│ └── README.md
├── data/ # Example and synthetic grouped counts
│ ├── beta_binomial_examples.csv
│ ├── beta_binomial_synthetic.csv
│ └── README.md
├── figures/ # Generated visuals (mastery map)
│ └── README.md
├── notebooks/ # Hands-on learning notebooks
│ ├── 1_Intro_Beta_Binomial.ipynb
│ ├── 2_Beta_Binomial_Classifier.ipynb
│ ├── 3_Visualization_Master_Map.ipynb
│ └── README.md
├── scripts/ # Minimal, readable scripts
│ ├── generate_beta_binomial_data.py
│ ├── beta_binomial_classifier.py
│ ├── plot_mastery_map.py
│ └── README.md
├── requirements.txt
├── Dockerfile # untouched
├── docker-compose.yml # untouched
└── start.sh # untouched
- Read
docs/Beta-Binomial-Classification.mdfor the concepts - Open
notebooks/1_Intro_Beta_Binomial.ipynbto see posterior updates - Run
notebooks/2_Beta_Binomial_Classifier.ipynbto classify data - Visualize mastery with
notebooks/3_Visualization_Master_Map.ipynb
- Posterior updates for Beta–Binomial (conjugacy)
- How to set priors and interpret uncertainty
- Mapping to mastery labels via credible bounds
- Visualizing attempts×successes mastery regions
- Media files in
docs/are placeholders and will be replaced later - Docker setup is preserved as in the template
