Skip to content

Commit 99eca2c

Browse files
committed
Manifold documentation mostly finished
1 parent 9867f85 commit 99eca2c

File tree

1 file changed

+47
-11
lines changed

1 file changed

+47
-11
lines changed

Docs/sphinx/Spray.rst

Lines changed: 47 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,9 @@
22

33
.. _Spray:
44

5-
*****
6-
Spray
7-
*****
5+
=======
6+
Spray
7+
=======
88

99
Spray Equations
1010
===============
@@ -163,7 +163,7 @@ The procedure is as follows for updating the spray droplet:
163163
.. math::
164164
Y_{r,i} = \left\{\begin{array}{c l}
165165
\displaystyle Y_{v,i} + A (Y_{g,i} - Y_{v,i}) & {\text{if $i \in \mathcal{S}_{pc}$ and $Y_{v,i} > 0$}}, \\
166-
\displaystyle\frac{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{v,k}}{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{g,k}} Y_{g,i} & {\text{otherwise}},
166+
\displaystyle\frac{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{r,k}}{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{g,k}} Y_{g,i} & {\text{otherwise}},
167167
\end{array}\right. \quad \forall\; i \in \mathcal{S}_g.
168168
169169
#. The average molar mass, specific heat, and density of the reference state in the gas film are computed as
@@ -347,7 +347,7 @@ The modified procedure for Manifold-based gas phase chemistry is as follows for
347347
.. math::
348348
Y_{r,i} = \left\{\begin{array}{c l}
349349
\displaystyle Y_{v,i} + A (Y_{g,i} - Y_{v,i}) & {\text{if $i \in \mathcal{S}_{pc}$ and $Y_{v,i} > 0$}}, \\
350-
\displaystyle\frac{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{v,k}}{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{g,k}} Y_{g,i} & {\text{otherwise}},
350+
\displaystyle\frac{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{r,k}}{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{g,k}} Y_{g,i} & {\text{otherwise}},
351351
\end{array}\right. \quad \forall\; i \in \mathcal{S}_g.
352352
353353
and note that :math:`\xi_i = W_{ij} Y_j`. We note that :math:`Y_{g,i} \: \forall i \in \mathcal{S}_g` can be evaluated from the manifold, but to reduce the number of variables that must be
@@ -359,11 +359,47 @@ The modified procedure for Manifold-based gas phase chemistry is as follows for
359359
\displaystyle 0.0 & {\text{otherwise}},
360360
\end{array}\right. \quad \forall\; i \in \mathcal{S}_g.
361361
362-
and its complement :math:`Y^{nc}_{g,i}` such that :math:`Y^{pc}_{g,i} + Y^{nc}_{g,i} = Y_{g,i}`, as well as similar definitions for :math:`Y^{nc}_{r,i}`, :math:`Y^{pc}_{r,i}`,
363-
:math:`Y^{nc}_{v,i}`, and :math:`Y^{pc}_{v,i}`.
362+
and its complement :math:`Y^{nc}_{g,i}` such that :math:`Y^{pc}_{g,i} + Y^{nc}_{g,i} = Y_{g,i}`, as well as similar definitions for :math:`Y^{nc}_{r,i}, Y^{pc}_{r,i},
363+
Y^{nc}_{v,i}, \text{and } Y^{pc}_{v,i}`. With these definitions,
364+
365+
.. math::
366+
Y^{pc}_{r,i} &= Y^{pc}_{v,i} + A (Y^{pc}_{g,i} - Y^{pc}_{v,i}), \\
367+
Y^{nc}_{r,i} &= \theta Y^{nc}_{g,i}, \\
368+
\text{where } \theta &= \frac{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{r,k}}{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y_{g,k}}
369+
= \frac{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y^{pc}_{r,k}}{1 - \sum_{k \in \mathcal{S}_{pc} | Y_{v,k} > 0 } Y^{pc}_{g,k}}
370+
371+
372+
Therefore, in order to compute :math:`\xi_{r,j} = W_{ij} Y_{r,i}` from the available data :math:`(\xi_{g,j}, Y^{pc}_{g,i}(\xi_{g,j}), \text{and } Y^{pc}_{v,i} )`, we note
373+
374+
.. math::
375+
\xi_{r,j} &= W_{ij} (Y^{pc}_{r,i} + Y^{nc}_{r,i}) = W_{ij} Y^{pc}_{r,i} + W_{ij} \theta Y^{nc}_{g,i}, \text{and} \\
376+
\xi_{g,j} &= W_{ij} (Y^{pc}_{g,i} + Y^{nc}_{g,i}) \therefore W_{ij} Y^{nc}_{g,i} = \xi_{g,j} - W_{ij} Y^{pc}_{g,i}.
377+
378+
We can therefore compute :math:`\xi_{r,j}` from only available data using:
379+
380+
.. math::
381+
\xi_{r,j} = W_{ij} Y^{pc}_{r,i} + \theta (\xi_{g,j} - W_{ij} Y^{pc}_{g,i} ).
382+
383+
The present implementation specializes to the case (common in combustion modeling) where the manifold parameters :math:`\xi_j` are either progress variable like :math:`(W_{ij}=0 \; \forall\; i \in \mathcal{S}_{pc})`
384+
or mixture fraction like (:math:`W_{ij}=1` for one :math:`i \in \mathcal{S}_{pc}` and :math:`0` for all others).
385+
386+
#. Proceeds as in the ideal gas implementation, but :math:`\bar{M}_r` and :math:`\rho_r` are computed as functions of the manifold :math:`\phi(\xi_j))`.
387+
:math:`c_{p,r}` is not computed because the energy equation is not solved.
388+
389+
#. Again, :math:`\mu_r`, :math:`\lambda_r`, and :math:`\rho D_{r,n}` are computed as functions of the manifold :math:`\phi(\xi_j))`.
390+
391+
#. Diffusion coefficent modification proceeds as in the detailed chemistry case.
392+
393+
#. Momentum source term computation proceeds as in the detailed chemistry case.
394+
395+
#. Mass source term proceeds as in the detailed chemistry case. Energy source term is ignored.
396+
397+
#. Gas phase source terms follow the detailed chemistry implementation, except that the energy/enthalpy equations are ignored and
398+
399+
.. math::
400+
S_{\rho \xi_j} = W_{ij} S_{\rho Y_i} = W_{ij} \mathcal{C} \sum_{n \in \mathcal{S}_L} \mathbf{L}_{i,n}\dot{m}_n \quad \forall\; i \in \mathcal{S}_{g},
401+
364402
365-
Therefore, in order to compute :math:`\xi_{r,j} = W_{ij} Y_{r,j}` from the available data (:math:`\xi_{g,i}`, :math:`Y^{pc}_{g,i}(\xi_{g,i})`, and :math:`Y^{pc}_{v,i}` ), we note
366-
:math:`\xi_{r,j} = W_{ij} (Y^{nc}_{r,j} + Y^{pc}_{r,j})`
367403
368404
Spray Flags and Inputs
369405
======================
@@ -445,7 +481,7 @@ and the *FuelLib-based GCM* are outlined in the subsections below. Please note t
445481
The source code for the liquid spray properties can be found in ``SprayProperties.H``.
446482

447483
PeleMP Implementation
448-
^^^^^^^^^^^^^^^^^^^^^
484+
~~~~~~~~~~~~~~~~~~~~~
449485

450486
.. table::
451487

@@ -510,7 +546,7 @@ PeleMP Implementation
510546

511547

512548
FuelLib-Based GCM
513-
^^^^^^^^^^^^^^^^^
549+
~~~~~~~~~~~~~~~~~
514550

515551
Currently the *GCM* approach of estimating liquid fuel properties is only available in PeleLMeX and requires:
516552

0 commit comments

Comments
 (0)