Skip to content

Commit 6e955f7

Browse files
authored
Merge pull request #387 from ntumlgroup/fix-some-typos-and-consistnecy
fix some typos and consistency
2 parents 6544547 + 5d481ce commit 6e955f7

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

libmultilabel/linear/linear.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ def train_1vsrest(
7979
options: str = "",
8080
verbose: bool = True,
8181
) -> FlatModel:
82-
"""Trains a linear model for multiabel data using a one-vs-rest strategy.
82+
"""Trains a linear model for multi-label data using a one-vs-rest strategy.
8383
8484
Args:
8585
y (sparse.csr_matrix): A 0/1 matrix with dimensions number of instances * number of classes.
@@ -396,7 +396,7 @@ def train_cost_sensitive(
396396
options: str = "",
397397
verbose: bool = True,
398398
) -> FlatModel:
399-
"""Trains a linear model for multilabel data using a one-vs-rest strategy
399+
"""Trains a linear model for multi-label data using a one-vs-rest strategy
400400
and cross-validation to pick an optimal asymmetric misclassification cost
401401
for Macro-F1.
402402
Outperforms train_1vsrest in most aspects at the cost of higher
@@ -500,7 +500,7 @@ def train_cost_sensitive_micro(
500500
options: str = "",
501501
verbose: bool = True,
502502
) -> FlatModel:
503-
"""Trains a linear model for multilabel data using a one-vs-rest strategy
503+
"""Trains a linear model for multi-label data using a one-vs-rest strategy
504504
and cross-validation to pick an optimal asymmetric misclassification cost
505505
for Micro-F1.
506506
Outperforms train_1vsrest in most aspects at the cost of higher

libmultilabel/linear/tree.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -117,7 +117,7 @@ def train_tree(
117117
dmax=10,
118118
verbose: bool = True,
119119
) -> TreeModel:
120-
"""Trains a linear model for multiabel data using a divide-and-conquer strategy.
120+
"""Trains a linear model for multi-label data using a divide-and-conquer strategy.
121121
The algorithm used is based on https://github.com/xmc-aalto/bonsai.
122122
123123
Args:

0 commit comments

Comments
 (0)