|
| 1 | +# |
| 2 | +# ISC License |
| 3 | +# |
| 4 | +# Copyright (c) 2025, Autonomous Vehicle Systems Lab, University of Colorado at Boulder |
| 5 | +# |
| 6 | +# Permission to use, copy, modify, and/or distribute this software for any |
| 7 | +# purpose with or without fee is hereby granted, provided that the above |
| 8 | +# copyright notice and this permission notice appear in all copies. |
| 9 | +# |
| 10 | +# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 11 | +# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 12 | +# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 13 | +# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 14 | +# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 15 | +# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 16 | +# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 17 | +""" |
| 18 | +The SRK integrator tested here is described in: |
| 19 | +
|
| 20 | +Tang, X., Xiao, A. Efficient weak second-order stochastic Runge-Kutta methods |
| 21 | +for Itô stochastic differential equations. Bit Numer Math 57, 241-260 (2017). |
| 22 | +https://doi.org/10.1007/s10543-016-0618-9 |
| 23 | +""" |
| 24 | +from __future__ import annotations |
| 25 | + |
| 26 | +from typing import Callable, List |
| 27 | + |
| 28 | +from Basilisk.utilities import macros |
| 29 | +from Basilisk.utilities import SimulationBaseClass |
| 30 | +from Basilisk.simulation import svIntegrators |
| 31 | +from Basilisk.simulation import dynParamManager |
| 32 | + |
| 33 | +try: |
| 34 | + from Basilisk.simulation import mujoco |
| 35 | + from Basilisk.simulation import StatefulSysModel |
| 36 | + couldImportMujoco = True |
| 37 | +except: |
| 38 | + couldImportMujoco = False |
| 39 | + |
| 40 | +import pytest |
| 41 | +import numpy as np |
| 42 | +import numpy.typing as npt |
| 43 | + |
| 44 | +# Function of the form y = f(t,x) where x and y are vectors of the same size |
| 45 | +DynFunc = Callable[[float, npt.NDArray[np.float64]], npt.NDArray[np.float64]] |
| 46 | + |
| 47 | +import numpy as np |
| 48 | + |
| 49 | +# Coefficient sets (from Tang & Xiao Table 2, W2-Ito1 & W2-Ito2) |
| 50 | +W2_Ito1 = { |
| 51 | + 'alpha': np.array([1/6, 2/3, 1/6]), |
| 52 | + 'beta0': np.array([-1, 1, 1]), |
| 53 | + 'beta1': np.array([2, 0, -2]), |
| 54 | + |
| 55 | + 'A0': np.array([[0.0, 0.0, 0.0], |
| 56 | + [1/2, 0.0, 0.0], |
| 57 | + [-1, 2, 0]]), |
| 58 | + |
| 59 | + 'B0': np.array([[0.0, 0.0, 0.0], |
| 60 | + [(6-np.sqrt(6))/10, 0.0, 0.0], |
| 61 | + [(3+2*np.sqrt(6))/5, 0.0, 0.0]]), |
| 62 | + |
| 63 | + 'A1': np.array([[0.0, 0.0, 0.0], |
| 64 | + [1/4, 0.0, 0.0], |
| 65 | + [1/4, 0.0, 0.0]]), |
| 66 | + |
| 67 | + 'B1': np.array([[0.0, 0.0, 0.0], |
| 68 | + [1/2, 0.0, 0.0], |
| 69 | + [-1/2, 0.0, 0.0]]), |
| 70 | + |
| 71 | + 'B2': np.array([[0.0, 0.0, 0.0], |
| 72 | + [1.0, 0.0, 0.0], |
| 73 | + [0.0, 0.0, 0.0]]), |
| 74 | +} |
| 75 | + |
| 76 | +W2_Ito2 = { |
| 77 | + 'alpha': np.array([1/6, 1/3, 1/3, 1/6]), |
| 78 | + 'beta0': np.array([0, -1, 1, 1]), |
| 79 | + 'beta1': np.array([0, 2, 0, -2]), |
| 80 | + |
| 81 | + 'A0': np.array([[0.0, 0.0, 0.0, 0.0], |
| 82 | + [1/2, 0.0, 0.0, 0.0], |
| 83 | + [0.0, 1/2, 0.0, 0.0], |
| 84 | + [0.0, 0.0, 1.0, 0.0]]), |
| 85 | + |
| 86 | + 'B0': np.array([[0.0, 0.0, 0.0, 0.0], |
| 87 | + [0.0, 0.0, 0.0, 0.0], |
| 88 | + [0.0, 1.0, 0.0, 0.0], |
| 89 | + [0.0, 1.0, 0.0, 0.0]]), |
| 90 | + |
| 91 | + 'A1': np.array([[0.0, 0.0, 0.0, 0.0], |
| 92 | + [1/2, 0.0, 0.0, 0.0], |
| 93 | + [1/2, 0.0, 0.0, 0.0], |
| 94 | + [1/2, 0.0, 0.0, 0.0]]), |
| 95 | + |
| 96 | + 'B1': np.array([[0.0, 0.0, 0.0, 0.0], |
| 97 | + [0.0, 0.0, 0.0, 0.0], |
| 98 | + [0.0, 1/2, 0.0, 0.0], |
| 99 | + [0.0, -1/2, 0.0, 0.0]]), |
| 100 | + |
| 101 | + 'B2': np.array([[0.0, 0.0, 0.0, 0.0], |
| 102 | + [0.0, 0.0, 0.0, 0.0], |
| 103 | + [0.0, 1.0, 0.0, 0.0], |
| 104 | + [0.0, 0.0, 0.0, 0.0]]), |
| 105 | +} |
| 106 | + |
| 107 | +def srk2_integrate( |
| 108 | + f: DynFunc, |
| 109 | + g_list: List[DynFunc], |
| 110 | + x0: npt.NDArray[np.float64], |
| 111 | + dt: float, |
| 112 | + tf: float, |
| 113 | + rng_seed: int, |
| 114 | + alpha: npt.NDArray[np.float64], |
| 115 | + beta0: npt.NDArray[np.float64], |
| 116 | + beta1: npt.NDArray[np.float64], |
| 117 | + A0: npt.NDArray[np.float64], |
| 118 | + B0: npt.NDArray[np.float64], |
| 119 | + A1: npt.NDArray[np.float64], |
| 120 | + B1: npt.NDArray[np.float64], |
| 121 | + B2: npt.NDArray[np.float64], |
| 122 | + ): |
| 123 | + """ |
| 124 | + Generic s-stage SRK integrator for vector SDE: |
| 125 | + dX = f(t,X) dt + sum_k g_list[k](t,X) dW_k |
| 126 | +
|
| 127 | + Method described in Tang & Xiao. |
| 128 | + """ |
| 129 | + |
| 130 | + def wrapped_f(full_state): |
| 131 | + t = full_state[0] |
| 132 | + x = full_state[1:] |
| 133 | + return np.concatenate([[1], f(t, x)]) |
| 134 | + |
| 135 | + wrapped_g_list = [] |
| 136 | + for g in g_list: |
| 137 | + def wrapped_g(full_state, g=g): |
| 138 | + t = full_state[0] |
| 139 | + x = full_state[1:] |
| 140 | + return np.concatenate([[0], g(t, x)]) |
| 141 | + wrapped_g_list.append(wrapped_g) |
| 142 | + |
| 143 | + s = alpha.size |
| 144 | + n = x0.size |
| 145 | + m = len(g_list) |
| 146 | + |
| 147 | + nsteps = int(np.floor(tf / dt)) |
| 148 | + |
| 149 | + x = np.zeros([nsteps+1, n+1], dtype=float) |
| 150 | + x[0,0] = 0 |
| 151 | + x[0,1:] = x0 |
| 152 | + |
| 153 | + rng = svIntegrators.SRKRandomVariableGenerator() |
| 154 | + rng.setSeed(rng_seed) |
| 155 | + |
| 156 | + for step in range(nsteps): |
| 157 | + t = x[step,0] |
| 158 | + X = x[step,:].copy() |
| 159 | + |
| 160 | + # generate random variables |
| 161 | + rvs: svIntegrators.SRKRandomVariables = rng.generate(m, dt) |
| 162 | + Ik: List[List[float]] = rvs.Ik |
| 163 | + Ikl: List[List[float]] = rvs.Ikl |
| 164 | + xi: float = rvs.xi |
| 165 | + |
| 166 | + # allocate stage arrays |
| 167 | + H0 = [X.copy() for _ in range(s)] |
| 168 | + Hk = [[X.copy() for _ in range(s)] for _ in range(m)] |
| 169 | + |
| 170 | + # compute H0 stages |
| 171 | + for i in range(s): |
| 172 | + sumA = np.zeros(n+1) |
| 173 | + sumB = np.zeros(n+1) |
| 174 | + for j in range(s): |
| 175 | + sumA += A0[i, j] * wrapped_f(H0[j]) * dt |
| 176 | + for k in range(m): |
| 177 | + sumB += B0[i, j] * wrapped_g_list[k](Hk[k][j]) * Ik[k] |
| 178 | + H0[i] = X + sumA + sumB |
| 179 | + |
| 180 | + # compute Hk stages |
| 181 | + for k in range(m): |
| 182 | + for i in range(s): |
| 183 | + sumA = np.zeros(n+1) |
| 184 | + sumB1 = np.zeros(n+1) |
| 185 | + sumB2 = np.zeros(n+1) |
| 186 | + for j in range(s): |
| 187 | + sumA += A1[i, j] * wrapped_f(H0[j]) * dt |
| 188 | + sumB1 += B1[i, j] * wrapped_g_list[k](Hk[k][j]) * xi |
| 189 | + for l in range(m): |
| 190 | + if l != k: |
| 191 | + sumB2 += B2[i, j] * wrapped_g_list[l](Hk[k][i]) * Ikl[k][l] |
| 192 | + Hk[k][i] = X + sumA + sumB1 + sumB2 |
| 193 | + |
| 194 | + # combine increments |
| 195 | + drift = np.zeros(n+1) |
| 196 | + for i in range(s): |
| 197 | + drift += alpha[i] * f(t, H0[i]) * dt |
| 198 | + |
| 199 | + diffusion = np.zeros(n+1) |
| 200 | + for k in range(m): |
| 201 | + for i in range(s): |
| 202 | + diffusion += beta0[i] * wrapped_g_list[k](Hk[k][i]) * Ik[k] |
| 203 | + diffusion += beta1[i] * wrapped_g_list[k](Hk[k][i]) * Ikl[k][k] |
| 204 | + |
| 205 | + x[step+1,:] = X + drift + diffusion |
| 206 | + |
| 207 | + return x |
| 208 | + |
| 209 | +class ExponentialSystem: |
| 210 | + """A simple system with one state: dx/dt = x*t.""" |
| 211 | + |
| 212 | + x0 = np.array([1]) |
| 213 | + |
| 214 | + @staticmethod |
| 215 | + def f(t: float, x: npt.NDArray[np.float64]): |
| 216 | + return np.array([t*x[0]]) |
| 217 | + |
| 218 | + g = [] |
| 219 | + |
| 220 | +class Example1System: |
| 221 | + """Example 1 dynamical system in: |
| 222 | +
|
| 223 | + Tang, X., Xiao, A. Efficient weak second-order stochastic Runge-Kutta methods |
| 224 | + for Itô stochastic differential equations. Bit Numer Math 57, 241-260 (2017). |
| 225 | + https://doi.org/10.1007/s10543-016-0618-9 |
| 226 | + """ |
| 227 | + x0 = np.array([1, 1]) |
| 228 | + |
| 229 | + @staticmethod |
| 230 | + def f(t: float, x: npt.NDArray[np.float64]): |
| 231 | + y1, y2 = x |
| 232 | + return np.array([ |
| 233 | + -273/512*y1, |
| 234 | + -1/160*y1 - (785/512 - np.sqrt(2)/8)*y2 |
| 235 | + ]) |
| 236 | + |
| 237 | + @staticmethod |
| 238 | + def g1(t: float, x: npt.NDArray[np.float64]): |
| 239 | + y1, y2 = x |
| 240 | + return np.array([ |
| 241 | + 1/4*y1, |
| 242 | + (1 - 2*np.sqrt(2)/8)/4*y2 |
| 243 | + ]) |
| 244 | + |
| 245 | + @staticmethod |
| 246 | + def g2(t: float, x: npt.NDArray[np.float64]): |
| 247 | + y1, y2 = x |
| 248 | + return np.array([ |
| 249 | + 1/16*y1, |
| 250 | + 1/10*y1 + 1/16*y2 |
| 251 | + ]) |
| 252 | + |
| 253 | + g = [g1, g2] |
| 254 | + |
| 255 | +def get_basilisk_sim(dt: float, x0: npt.NDArray[np.float64], f: DynFunc, g: List[DynFunc], seed: int): |
| 256 | + |
| 257 | + # Declared inside, since StatefulSysModel may be undefined if not running with mujoco |
| 258 | + class GenericStochasticStateModel(StatefulSysModel.StatefulSysModel): |
| 259 | + |
| 260 | + def __init__(self, x0: npt.NDArray[np.float64], f: DynFunc, g: List[DynFunc]): |
| 261 | + super().__init__() |
| 262 | + self.x0 = x0 |
| 263 | + self.f = f |
| 264 | + self.g = g |
| 265 | + |
| 266 | + def registerStates(self, registerer: StatefulSysModel.DynParamRegisterer): |
| 267 | + """Called once during InitializeSimulation""" |
| 268 | + # We get one noise source per diffusion function g: |
| 269 | + m = len(self.g) |
| 270 | + n = self.x0.size |
| 271 | + |
| 272 | + self.states: List[dynParamManager.StateData] = [] |
| 273 | + for i in range(n): |
| 274 | + self.states.append( registerer.registerState(1, 1, f"y{i+1}") ) |
| 275 | + self.states[-1].setNumNoiseSources(m) |
| 276 | + self.states[-1].setState([[self.x0[i]]]) |
| 277 | + |
| 278 | + # We want every noise source to be shared between states |
| 279 | + for k in range(m): |
| 280 | + registerer.registerSharedNoiseSource([ |
| 281 | + (state, k) |
| 282 | + for state in self.states |
| 283 | + ]) |
| 284 | + |
| 285 | + def UpdateState(self, CurrentSimNanos: int): |
| 286 | + """Called at every integrator step""" |
| 287 | + m = len(self.g) |
| 288 | + n = self.x0.size |
| 289 | + |
| 290 | + t = macros.NANO2SEC * CurrentSimNanos |
| 291 | + |
| 292 | + # Collect current state into a numpy array |
| 293 | + x = np.array([state.getState()[0][0] for state in self.states]) |
| 294 | + |
| 295 | + # Compute f and store in the derivative of the states |
| 296 | + deriv = self.f(t, x) |
| 297 | + for i in range(n): |
| 298 | + self.states[i].setDerivative( [[deriv[i]]] ) |
| 299 | + |
| 300 | + # Compute g_k and store in the diffusion of the states |
| 301 | + for k in range(m): |
| 302 | + diff = self.g[k](t, x) |
| 303 | + for i in range(n): |
| 304 | + self.states[i].setDiffusion( [[diff[i]]], index=k ) |
| 305 | + |
| 306 | + # Create sim, process, and task |
| 307 | + scSim = SimulationBaseClass.SimBaseClass() |
| 308 | + dynProcess = scSim.CreateNewProcess("test") |
| 309 | + dynProcess.addTask(scSim.CreateNewTask("test", macros.sec2nano(dt))) |
| 310 | + |
| 311 | + scene = mujoco.MJScene("<mujoco/>") # empty scene, no multi-body dynamics |
| 312 | + scSim.AddModelToTask("test", scene) |
| 313 | + |
| 314 | + integratorObject = svIntegrators.svStochIntegratorW2Ito1(scene) |
| 315 | + scene.setIntegrator(integratorObject) |
| 316 | + |
| 317 | + stateModel = GenericStochasticStateModel(x0, f, g) |
| 318 | + stateModel.ModelTag = "testModel" |
| 319 | + |
| 320 | + scene.AddModelToDynamicsTask(stateModel) |
| 321 | + |
| 322 | + scSim.InitializeSimulation() |
| 323 | + |
| 324 | + return scSim, stateModel, integratorObject |
| 325 | + |
| 326 | +@pytest.mark.skipif(not couldImportMujoco, reason="Compiled Basilisk without --mujoco") |
| 327 | +def test_deterministic(): |
| 328 | + |
| 329 | + dt = 1 |
| 330 | + tf = 1 |
| 331 | + seed = 10 |
| 332 | + |
| 333 | + system = ExponentialSystem |
| 334 | + |
| 335 | + scSim, stateModel, integratorObject = get_basilisk_sim(dt, system.x0, system.f, system.g, seed) |
| 336 | + scSim.ConfigureStopTime( macros.sec2nano(tf) ) |
| 337 | + scSim.ExecuteSimulation() |
| 338 | + |
| 339 | + x1Basilisk = stateModel.states[0].getState()[0][0] |
| 340 | + |
| 341 | + xPython = srk2_integrate(system.f, system.g, system.x0, dt, tf, seed, **W2_Ito1) |
| 342 | + x1Python = xPython[1,:] |
| 343 | + |
| 344 | + x1expected = np.exp( tf**2 / 2 ) |
| 345 | + |
| 346 | + raise NotImplementedError("WIP") |
| 347 | + |
| 348 | +if __name__ == "__main__": |
| 349 | + if True: |
| 350 | + test_deterministic() |
| 351 | + else: |
| 352 | + pytest.main([__file__]) |
0 commit comments