The aim of this task is to automatically detect medical concepts related to each image, as a first step towards generating image captions, medical reports, or to help in medical diagnosis.
- Acquisition of Datasets and Extraction of Images from Tarfiles
- Data Exploration
- Data Analysis
- Data Visualization
- Data Preprocessing
- Implementation of Machine learning models
- Evaluation and Prediction --
| No | Datasets | No of images |
|---|---|---|
| 0 | Train Dataset | 60963 |
| 1 | Validation Dataset | 7,703 |
| 2 | Test Dataset | 7,662 |
| 3 | Total | 76328 |
- Evaluation metric == F1 Score: is the most suited for imbalanced class labels (in our case -- concepts to be detected).
| No | Model Description | Dev. f1 Score | Test f1 Score |
|---|---|---|---|
| 0 | DenseNet-121 Encoder + FFNN (AUEB NLP Group, 2019) | 0.157 | 0.146 |
| 1 | DenseNet-121 Encoder + k-NN Image Retrieval (AUEB NLP Group, 2019) | 0.147 | 0.142 |
| No | Datasets | No of images |
|---|---|---|
| 0 | Train Dataset | 30000 |
| 1 | Validation Dataset | 3500 |
| 2 | Test Dataset | 3500 |
| 3 | Total | 37000 |
| No | Model Description | Dev. f1 Score | Test f1 Score |
|---|---|---|---|
| 0 | DenseNet-121 Encoder + FFNN (AUEB NLP Group, 2019) | 0.168 | 0.161 |
| 1 | Resnet 101 + FFNN, Multi-label classification in Xu, et al 2019 | 0.168 | 0.160 |
| 2 | DenseNet-121 Encoder + k-NN Image Retrieval (AUEB NLP Group, 2019) | 0.150 | 0.142 |
| 4 | ResNet 101 + Data Filtering (Df1) -- Xu et al., 2019 (Damo Group) | 0.169 | 0.160 |
| 5 | ResNet 101 + Data Filtering (Df3) -- Xu et al., 2019 (Damo Group) | 0.170 | 0.163 |
- Download ROCO tar files and extract images from the files ->
download_extract.py, - DenseNet-121 Encoder/Resnet 101 + Feed Forward Neural Network ->
train_model_get_threshold.py, - DenseNet-121 Encoder + k-NN Image Retrieval ->
knn_train_test.py, - ResNet 101 + Data Filtering (Df1/Df3) ->
filtered_model.py, - make predictions on test data ->
make_predictions.py,