|
| 1 | +/** |
| 2 | + * @file image_u8_parallel.c |
| 3 | + * @author MqCreaple (gmq14159@gmail.com) |
| 4 | + * @brief Parallelized processing of various image_u8 related functions. |
| 5 | + * @version 0.1 |
| 6 | + * @date 2025-08-07 |
| 7 | + * |
| 8 | + * @copyright Copyright (c) 2025 |
| 9 | + * |
| 10 | + */ |
| 11 | + |
| 12 | +#include "common/image_u8_parallel.h" |
| 13 | +#include "common/workerpool.h" |
| 14 | +#include "common/math_util.h" |
| 15 | + |
| 16 | +static void convolve(const uint8_t *x, uint8_t *y, int sz, const uint8_t *k, int ksz) |
| 17 | +{ |
| 18 | + assert((ksz&1)==1); |
| 19 | + |
| 20 | + for (int i = 0; i < ksz/2 && i < sz; i++) |
| 21 | + y[i] = x[i]; |
| 22 | + |
| 23 | + for (int i = 0; i < sz - ksz + 1; i++) { |
| 24 | + uint32_t acc = 0; |
| 25 | + |
| 26 | + for (int j = 0; j < ksz; j++) |
| 27 | + acc += k[j]*x[i+j]; |
| 28 | + |
| 29 | + y[ksz/2 + i] = acc >> 8; |
| 30 | + } |
| 31 | + |
| 32 | + for (int i = sz - ksz/2; i < sz; i++) |
| 33 | + y[i] = x[i]; |
| 34 | +} |
| 35 | + |
| 36 | +struct image_u8_convolve_2D_task { |
| 37 | + image_u8_t *im; |
| 38 | + const uint8_t *k; |
| 39 | + int ksz; |
| 40 | + int idx_st; |
| 41 | + int idx_ed; |
| 42 | +}; |
| 43 | + |
| 44 | +void _image_u8_convolve_2D_thread_1(void *p) { |
| 45 | + struct image_u8_convolve_2D_task *params = (struct image_u8_convolve_2D_task*) p; |
| 46 | + image_u8_t *im = params->im; |
| 47 | + const uint8_t *k = params->k; |
| 48 | + int ksz = params->ksz; |
| 49 | + int y_st = params->idx_st; |
| 50 | + int y_ed = params->idx_ed; |
| 51 | + |
| 52 | + assert((ksz & 1) == 1); // ksz must be odd. |
| 53 | + |
| 54 | + uint8_t *x = malloc(sizeof(uint8_t)*im->stride); |
| 55 | + for (int y = y_st; y < y_ed; y++) { |
| 56 | + memcpy(x, &im->buf[y*im->stride], im->stride); |
| 57 | + convolve(x, &im->buf[y*im->stride], im->width, k, ksz); |
| 58 | + } |
| 59 | + free(x); |
| 60 | +} |
| 61 | + |
| 62 | +void _image_u8_convolve_2D_thread_2(void *p) { |
| 63 | + struct image_u8_convolve_2D_task *params = (struct image_u8_convolve_2D_task*) p; |
| 64 | + image_u8_t *im = params->im; |
| 65 | + const uint8_t *k = params->k; |
| 66 | + int ksz = params->ksz; |
| 67 | + int x_st = params->idx_st; |
| 68 | + int x_ed = params->idx_ed; |
| 69 | + |
| 70 | + uint8_t *xb = malloc(sizeof(uint8_t)*im->height); |
| 71 | + uint8_t *yb = malloc(sizeof(uint8_t)*im->height); |
| 72 | + for (int x = x_st; x < x_ed; x++) { |
| 73 | + |
| 74 | + for (int y = 0; y < im->height; y++) |
| 75 | + xb[y] = im->buf[y*im->stride + x]; |
| 76 | + |
| 77 | + convolve(xb, yb, im->height, k, ksz); |
| 78 | + |
| 79 | + for (int y = 0; y < im->height; y++) |
| 80 | + im->buf[y*im->stride + x] = yb[y]; |
| 81 | + } |
| 82 | + free(xb); |
| 83 | + free(yb); |
| 84 | +} |
| 85 | + |
| 86 | +void image_u8_convolve_2D_parallel(workerpool_t *wp, image_u8_t *im, const uint8_t *k, int ksz) { |
| 87 | + if(im->width * im->height < 65536) { |
| 88 | + // for small images, directly use single threaded convolution |
| 89 | + image_u8_convolve_2D(im, k, ksz); |
| 90 | + return; |
| 91 | + } |
| 92 | + int nthreads = workerpool_get_nthreads(wp); |
| 93 | + |
| 94 | + struct image_u8_convolve_2D_task *params = malloc(sizeof(struct image_u8_convolve_2D_task) * nthreads); |
| 95 | + int y_inc = im->height / nthreads; |
| 96 | + int y_remainder = im->height % nthreads; |
| 97 | + int last_y = 0; |
| 98 | + for(int idx = 0; idx < nthreads; idx++) { |
| 99 | + params[idx].im = im; |
| 100 | + params[idx].k = k; |
| 101 | + params[idx].ksz = ksz; |
| 102 | + params[idx].idx_st = last_y; |
| 103 | + last_y += y_inc; |
| 104 | + if(idx < y_remainder) { |
| 105 | + last_y += 1; // distribute the remainders across the n threads |
| 106 | + } |
| 107 | + params[idx].idx_ed = last_y; |
| 108 | + workerpool_add_task(wp, _image_u8_convolve_2D_thread_1, ¶ms[idx]); |
| 109 | + } |
| 110 | + workerpool_run(wp); |
| 111 | + |
| 112 | + int x_inc = im->width / nthreads; |
| 113 | + int x_remainder = im->width % nthreads; |
| 114 | + int last_x = 0; |
| 115 | + for(int idx = 0; idx < nthreads; idx++) { |
| 116 | + params[idx].im = im; |
| 117 | + params[idx].k = k; |
| 118 | + params[idx].ksz = ksz; |
| 119 | + params[idx].idx_st = last_x; |
| 120 | + last_x += x_inc; |
| 121 | + if(idx < x_remainder) { |
| 122 | + last_x += 1; // distribute the remainders across the n threads |
| 123 | + } |
| 124 | + params[idx].idx_ed = last_x; |
| 125 | + workerpool_add_task(wp, _image_u8_convolve_2D_thread_2, ¶ms[idx]); |
| 126 | + } |
| 127 | + workerpool_run(wp); |
| 128 | + |
| 129 | + free(params); |
| 130 | +} |
| 131 | + |
| 132 | +void image_u8_gaussian_blur_parallel(workerpool_t *wp, image_u8_t *im, double sigma, int ksz) { |
| 133 | + if (sigma == 0) |
| 134 | + return; |
| 135 | + |
| 136 | + assert((ksz & 1) == 1); // ksz must be odd. |
| 137 | + |
| 138 | + // build the kernel. |
| 139 | + double *dk = malloc(sizeof(double)*ksz); |
| 140 | + |
| 141 | + // for kernel of length 5: |
| 142 | + // dk[0] = f(-2), dk[1] = f(-1), dk[2] = f(0), dk[3] = f(1), dk[4] = f(2) |
| 143 | + for (int i = 0; i < ksz; i++) { |
| 144 | + int x = -ksz/2 + i; |
| 145 | + double v = exp(-.5*sq(x / sigma)); |
| 146 | + dk[i] = v; |
| 147 | + } |
| 148 | + |
| 149 | + // normalize |
| 150 | + double acc = 0; |
| 151 | + for (int i = 0; i < ksz; i++) |
| 152 | + acc += dk[i]; |
| 153 | + |
| 154 | + for (int i = 0; i < ksz; i++) |
| 155 | + dk[i] /= acc; |
| 156 | + |
| 157 | + uint8_t *k = malloc(sizeof(uint8_t)*ksz); |
| 158 | + for (int i = 0; i < ksz; i++) |
| 159 | + k[i] = dk[i]*255; |
| 160 | + |
| 161 | + free(dk); |
| 162 | + |
| 163 | + image_u8_convolve_2D_parallel(wp, im, k, ksz); |
| 164 | + free(k); |
| 165 | +} |
0 commit comments