Complete Streamlit application for financial market analysis with technical visualization, portfolio management, and sentiment analysis.
Advanced technical analysis (MA, RSI, Bollinger Bands) with interactive Plotly visualizations

Comparative analysis and asynchronous data download

Multi-asset portfolio simulation, performance/risk analysis and geographical mapping

Reddit sentiment (simulated), financial news and macroeconomic context

7 unique visual themes to customize the interface
- Clone the repository :
git clone https://github.com/BuyukHasan/bourse_dashboard
cd bourse_dashboard- Create a virtual environment :
python -m venv venv
source venv/bin/activate # Linux/Mac
venv\Scripts\activate # Windows- Install the dependencies :
pip install -r requirements.txt- Launch the application :
streamlit run app.py- Individual dashboard : Technical analysis of an asset
- Multi-asset comparison : Comparison of multiple instruments
- Virtual portfolio : Investment strategy simulation
- Unit tests : Module validation
- Rerun : Button
r(from the dashboard) - Clear cache: Button
cthen confirm the instruction on the page (from the dashboard) - Stop application: Control +
c(from the terminal where you launchedstreamlit run app.py)
financial-dashboard/
├── app.py # Main entry point
├── requirements.txt # Dependencies
├── .gitignore
└── src/ # Folder containing all the project classes
├── asset_categories.py # Asset classification by sector
├── css.py # Visual theme management
├── dashboard.py # Main dashboard module
├── data_fetcher.py # Data retrieval (yfinance)
├── geo_data.py # Geographical data
├── macro_data.py # Macroeconomic data
├── news_fetcher.py # News collection
├── portfolio_manager.py # Portfolio management
├── reddit_analyzer.py # Sentiment analysis (simulated)
├── technical_analyzer.py # Technical indicator calculations
└── visualizer.py # Graph visualizations
- streamlit==1.47.0 - Web interface
- yfinance==0.2.65 - Financial data
- plotly==6.2.0 - Interactive visualizations
- pandas==2.3.0 - Data manipulation
- numpy==2.2.2 - Scientific calculations
Contributions are welcome! Recommended process:
- Forker the project
- Create a branch :
git checkout -b feature/new-feature - Commit your changes :
git commit -m 'Add an awesome feature' - Push to the branch :
git push origin feature/new-feature - Open a Pull Request
This project is licensed under the MIT License. See the LICENSE file for details.
Note : While the MIT license is permissive, an email notification (buyukh7723@gmail.com) is appreciated for significant reuse. I generally accept as long as I am notified.








