Skip to content

CharithaReddy18/AI-health-chatbot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

75 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

๐Ÿค– MediBot: AI Health Assistant

License: MIT GSSoC '25 Python FastAPI React Docker

An intelligent, conversational AI Health Assistant that provides safe, contextually aware, and empathetic health information through advanced RAG (Retrieval-Augmented Generation) technology.

MediBot Demo


๐Ÿ“– Table of Contents


๐ŸŒŸ Overview

MediBot represents a significant evolution in AI-powered healthcare assistance, transitioning from simple rule-based responses to a sophisticated, full-stack application powered by modern artificial intelligence. This project bridges the gap between users and healthcare information by offering intelligent, contextually aware health guidance.

๐ŸŽฏ What Makes MediBot Special?

  • Advanced RAG Pipeline: Unlike traditional chatbots, MediBot uses Retrieval-Augmented Generation to understand context, retrieve relevant medical information, and synthesize accurate responses
  • Human-Like Conversations: Powered by Google's Gemini models with carefully crafted prompts that ensure natural, empathetic interactions
  • Safety-First Design: Every response includes mandatory medical disclaimers and escalation guidance
  • Modern Architecture: Full-stack application with React frontend, FastAPI backend, and Qdrant vector database
  • Docker-Ready: Fully containerized for consistent development and deployment

โš ๏ธ Important Disclaimer: MediBot is designed for educational and informational purposes only. It is not a replacement for professional medical advice, diagnosis, or treatment. Always consult qualified healthcare providers for medical concerns.


โœจ Key Features

๐Ÿง  Intelligent Symptom Analysis

  • Natural Language Processing: Understands complex symptom descriptions in everyday language
  • Contextual Responses: Provides relevant information based on medical knowledge base
  • Graceful Fallbacks: When specific information isn't available, offers safe general wellness guidance

๐ŸŽญ Human-Like Persona

  • Empathetic Communication: MediBot adopts a caring, supportive tone in all interactions
  • No Technical Jargon: Avoids revealing its internal processes (like "according to the documents...")
  • Consistent Character: Maintains its helpful health assistant persona throughout conversations

๐Ÿ”’ Safety & Reliability

  • Medical Disclaimers: Every response concludes with appropriate safety warnings
  • Escalation Logic: Identifies when users should seek immediate medical attention
  • Controlled Responses: Limited to safe, general wellness advice when specific data is unavailable

๐Ÿ—๏ธ Modern Infrastructure

  • RESTful API: Clean, well-documented FastAPI backend with automatic OpenAPI documentation
  • Vector Search: Qdrant-powered semantic search for relevant medical information retrieval
  • Responsive Frontend: Modern React application with intuitive user interface
  • Containerized Deployment: Docker Compose setup for easy development and deployment

๐Ÿ“Š Observability & Monitoring

  • Structured Logging: Comprehensive logging using Loguru for debugging and monitoring
  • Request Tracking: Monitor query processing times and system performance
  • Error Handling: Robust error management with meaningful user feedback

๐Ÿ—๏ธ Architecture

MediBot follows a modern, microservices-inspired architecture:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   React Client  โ”‚    โ”‚   FastAPI API   โ”‚    โ”‚ Qdrant Vector   โ”‚
โ”‚   (Frontend)    โ”‚โ—„โ”€โ”€โ–บโ”‚   (Backend)     โ”‚โ—„โ”€โ”€โ–บโ”‚   Database      โ”‚
โ”‚   Port: 5173    โ”‚    โ”‚   Port: 8000    โ”‚    โ”‚   Port: 6333    โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
         โ”‚                        โ”‚                        โ”‚
         โ”‚              โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”               โ”‚
         โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–บโ”‚   Google        โ”‚โ—„โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                         โ”‚   Gemini AI     โ”‚
                         โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ”„ Request Flow

  1. User Input: User submits health query through React frontend
  2. API Processing: FastAPI receives and validates the request
  3. Information Retrieval: Qdrant vector database searches for relevant medical information
  4. AI Generation: Google Gemini processes the context and generates human-like responses
  5. Safety Layer: Response validation and mandatory disclaimer addition
  6. User Response: Formatted response delivered to frontend

๐Ÿ› ๏ธ Tech Stack

Backend

  • FastAPI FastAPI - High-performance Python web framework
  • Python Python 3.11+ - Core programming language
  • Pydantic Pydantic - Data validation and settings management

AI & Machine Learning

  • Google Google Gemini - Advanced language model for natural responses
  • LangChain LangChain - Framework for building LLM applications
  • Sentence Transformers Sentence Transformers - Text embedding models

Database & Storage

  • Qdrant Qdrant - Vector database for semantic search
  • FAISS FAISS - Legacy vector indexing (being phased out)

Frontend

  • React React 18 - Modern JavaScript library for building user interfaces
  • Vite Vite - Lightning-fast build tool
  • Tailwind CSS Tailwind CSS - Utility-first CSS framework

DevOps & Deployment

  • Docker Docker & Docker Compose - Containerization platform
  • Loguru Loguru - Advanced Python logging

๐Ÿ“‚ Project Structure

AI-HEALTH-CHATBOT/
โ”œโ”€โ”€ backend/                    # FastAPI Backend Application
โ”‚   โ”œโ”€โ”€ app/
โ”‚   โ”‚   โ”œโ”€โ”€ Medical_DataBase/   # Stores the FAISS vector index for the RAG model
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ index.faiss
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ index.pkl
โ”‚   โ”‚   โ”œโ”€โ”€ models/             # Pydantic schemas for data validation (schemas.py)
โ”‚   โ”‚   โ”œโ”€โ”€ routers/            # Defines the API endpoints (e.g., /chat, /disease)
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ chat.py
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ disease.py
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ health.py
โ”‚   โ”‚   โ”œโ”€โ”€ services/           # Contains the core business logic for all features
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ disease_predictor.py
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ health_info.py
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ medical_agent.py # Manages the core RAG pipeline and LLM interaction
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ symptom_checker.py
โ”‚   โ”‚   โ”œโ”€โ”€ utils/              # Utility and helper functions
โ”‚   โ”‚   โ”œโ”€โ”€ config.py           # Handles configuration and environment variables
โ”‚   โ”‚   โ””โ”€โ”€ main.py             # The main entry point to launch the FastAPI server
โ”‚   โ”œโ”€โ”€ data/                   # Directory for raw data files like CSVs
โ”‚   โ””โ”€โ”€ requirements.txt        # A list of all Python dependencies
โ”‚
โ”œโ”€โ”€ client/                     # React Frontend Application
โ”‚   โ”œโ”€โ”€ public/                 # Contains static assets like the main index.html and icons
โ”‚   โ”œโ”€โ”€ src/
โ”‚   โ”‚   โ”œโ”€โ”€ api/                # Functions for making HTTP requests to the backend
โ”‚   โ”‚   โ”œโ”€โ”€ assets/             # Stores local assets like images, fonts, and CSS
โ”‚   โ”‚   โ”œโ”€โ”€ components/         # Reusable React components (e.g., ChatWindow, Button)
โ”‚   โ”‚   โ”œโ”€โ”€ pages/              # Components representing entire pages or views
โ”‚   โ”‚   โ”œโ”€โ”€ App.jsx             # The main root component of the application
โ”‚   โ”‚   โ””โ”€โ”€ main.jsx            # The entry point for the React application
โ”‚   โ”œโ”€โ”€ package.json            # Lists Node.js dependencies and project scripts
โ”‚   โ””โ”€โ”€ vite.config.js          # Configuration file for the Vite build tool
โ”‚
โ””โ”€โ”€ README.md                   # You are here!

AI Health Chatbot

Medibot is a Streamlit-based AI health assistant that provides symptom checking, health guidance, and doctor recommendations using NLP and Retrieval-Augmented Generation (RAG).


๐Ÿš€ New Feature: NLP Enhancement (Multilingual Support)

  • Added translation pipeline (English โ†” Hindi, Marathi, Telugu).
  • Integrated multilingual embeddings with FAISS.
  • Added language selector in Streamlit UI.
  • Ensured responses maintain medical safety disclaimer.

How to Run:

  1. pip install -r requirements.txt
  2. streamlit run app/WellnessResourceHub.py
AI-health-chatbot/
โ”œโ”€โ”€ ๐Ÿ“ backend/                          # Backend API and services
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ app/
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ config/                   # Configuration management
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ models/                   # Pydantic models and schemas
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ schemas.py
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ routers/                  # FastAPI route handlers
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ chat.py              # Main chat endpoint
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ rag.py               # RAG pipeline endpoints
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ services/                 # Business logic and AI services
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ rag/                 # RAG implementation
โ”‚   โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ generation/      # AI response generation
โ”‚   โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ ingestion/       # Document processing
โ”‚   โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ retrieval/       # Information retrieval
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ medical_agent.py     # Main AI agent logic
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ symptom_checker.py   # Symptom analysis
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ main.py                  # FastAPI application entry point
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ docker-compose.yml           # Docker services configuration
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ Dockerfile                   # Backend container definition
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ requirements.txt             # Python dependencies
โ”‚   โ””โ”€โ”€ ๐Ÿ“„ .env.example                # Environment variables template
โ”œโ”€โ”€ ๐Ÿ“ client/                          # React frontend application
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ public/                      # Static assets
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ src/
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ api/                     # API communication layer
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ components/              # Reusable React components
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ pages/                   # Application pages
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“„ main.jsx                # React entry point
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ package.json                # Node.js dependencies
โ”‚   โ””โ”€โ”€ ๐Ÿ“„ vite.config.js              # Vite configuration
โ”œโ”€โ”€ ๐Ÿ“ data/                           # Medical knowledge base
โ”‚   โ””โ”€โ”€ ๐Ÿ“ medical_knowledge/
โ”‚       โ””โ”€โ”€ ๐Ÿ“„ medlineplus_structured.json
โ”œโ”€โ”€ ๐Ÿ“ DoctorSpecialistRecommend/      # Doctor recommendation system
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ Disease_Description.csv
โ”‚   โ”œโ”€โ”€ ๐Ÿ“„ Doctor_Specialist.csv
โ”‚   โ””โ”€โ”€ ๐Ÿ“„ doctor_spec.py
โ”œโ”€โ”€ ๐Ÿ“„ README.md                       # Project documentation
โ”œโ”€โ”€ ๐Ÿ“„ CONTRIBUTING.md                 # Contribution guidelines
โ”œโ”€โ”€ ๐Ÿ“„ CODE_OF_CONDUCT.md             # Community standards
โ”œโ”€โ”€ ๐Ÿ“„ LICENSE                        # MIT License
โ””โ”€โ”€ ๐Ÿ“„ ROADMAP.md                     # Development roadmap

๐Ÿš€ Quick Start

Prerequisites

Before you begin, ensure you have the following installed:

  • Docker Docker Desktop - Essential for running the containerized backend
  • Node.js Node.js 16+ - For frontend development
  • Git Git - Version control system

๐Ÿ”ง Backend Setup

  1. Clone the Repository

    git clone https://github.com/CharithaReddy18/AI-health-chatbot.git
    cd AI-health-chatbot
    
  2. Navigate to Backend Directory

    cd backend
    
  3. Configure Environment Variables

    Create a .env file in the backend directory:

    cp .env.example .env
    

    Edit the .env file and add your API keys:

    # Required: Google AI API Key
    GOOGLE_API_KEY=your_google_gemini_api_key_here
    
    # Optional: Alternative LLM providers
    GROQ_API_KEY=your_groq_api_key_here
    
    # Database Configuration
    QDRANT_URL=http://qdrant:6333
    
    # Application Settings
    DEBUG=true
    
  4. Build and Start Services (First Time)

    docker-compose up --build
    

    This command will:

    • Build the FastAPI application container
    • Download and start the Qdrant vector database
    • Install all Python dependencies
    • Initialize the medical knowledge base
  5. Verify Backend is Running

    Once the containers are up, verify the services:

๐ŸŽจ Frontend Setup

  1. Navigate to Client Directory

    cd client  # From the project root directory
    
  2. Install Dependencies

    npm install
    
  3. Start Development Server

    npm run dev
    
  4. Access the Application

    Open your browser and navigate to http://localhost:5173

๐Ÿ”„ Subsequent Runs

For future development sessions:

Backend:

cd backend
docker-compose up  # No --build flag needed unless dependencies change

Frontend:

cd client
npm run dev

๐Ÿ’ก Pro Tip: If you modify requirements.txt, remember to rebuild with docker-compose up --build


โš™๏ธ Configuration

๐Ÿ” Environment Variables

Variable Description Required Default
GOOGLE_API_KEY Google Gemini API key for AI responses โœ… Yes None
GROQ_API_KEY Alternative Groq API key โŒ Optional None
QDRANT_URL Qdrant database connection URL โŒ Optional http://qdrant:6333
DEBUG Enable debug logging โŒ Optional false

๐ŸŽ›๏ธ Application Settings

The application uses Pydantic for configuration management. Key settings include:

  • Embedding Model: sentence-transformers/all-MiniLM-L6-v2
  • Vector Database: Qdrant with 384-dimensional embeddings
  • LLM Temperature: Low temperature (0.0-0.3) for consistent medical responses
  • Chunking Strategy: 500 characters with 50-character overlap

๐Ÿงช Testing the System

GROQ_API_KEY="YOUR_KEY_HERE"
HUGGINGFACE_API_KEY="YOUR_KEY_HERE"

๐Ÿ” Basic Functionality Test

  1. Start the Application (both backend and frontend)

  2. Navigate to the Symptom Checker in your browser

  3. Test Knowledge-Based Queries (should use medical database):

    "What are the common causes of a headache?"
    "I have a sore throat and fever. What could this be?"
    "Can you explain what diabetes is?"
    
  4. Test Graceful Fallback Responses (for topics not in database):

    "What's the best diet for weight loss?"
    "How can I improve my sleep quality?"
    "Can you suggest home remedies for stress?"
    

๐Ÿฅ Safety Feature Tests

  1. Verify Safety Disclaimers:

    • Ensure every response ends with medical disclaimer
    • Confirm bot never claims to be a real doctor
  2. Test Emergency Scenarios:

    "I'm having severe chest pain and shortness of breath"
    "My child has a very high fever and is unresponsive"
    

๐Ÿ“Š API Testing

  1. Direct API Testing:
    • Visit http://localhost:8000/docs
    • Test the POST /api/chat endpoint
    • Example request body:
      {
        "query": "What are the symptoms of the flu?"
      }
      

โœ… Expected Behaviors

  • Natural Responses: Bot should never mention "context" or "documents"
  • Consistent Disclaimers: Every response should include safety warnings
  • Appropriate Fallbacks: Unknown topics should receive general wellness advice
  • Professional Tone: Empathetic and helpful communication style

๐Ÿ”ฌ API Documentation

๐Ÿ“ก Main Endpoints

POST /api/chat

Primary chat endpoint for health queries.

Request Body:

{
  "query": "string"  // User's health question
}

Response:

{
  "success": true,
  "query": "What are the symptoms of the flu?",
  "response": "The flu typically presents with...",
  "sources": ["medical_knowledge"],
  "processing_time": 1.23
}

GET /health

System health check endpoint.

Response:

{
  "status": "healthy",
  "services": {
    "api": "operational",
    "vector_db": "connected",
    "llm": "available"
  }
}

๐Ÿ“‹ Request/Response Models

  • MedicalQueryRequest: Input validation for user queries
  • MedicalQueryResponse: Structured response format
  • SystemStatusResponse: Health check information

๐ŸŽฏ Features Roadmap

๐Ÿ”„ Current Phase (v2.0)

  • โœ… Advanced RAG pipeline with Qdrant
  • โœ… Google Gemini integration
  • โœ… Human-like conversation prompts
  • โœ… Docker containerization
  • โœ… React frontend with modern UI

๐Ÿš€ Next Phase (v2.1)

  • ๐Ÿ”„ Enhanced medical knowledge base
  • ๐Ÿ”„ Conversation memory and context
  • ๐Ÿ”„ User authentication and history
  • ๐Ÿ”„ Mobile-responsive design improvements

๐ŸŒŸ Future Enhancements (v3.0+)

  • ๐Ÿ”ฎ Multi-language support (Hindi, Spanish, etc.)
  • ๐Ÿ”ฎ Voice input and output capabilities
  • ๐Ÿ”ฎ Integration with wearable devices
  • ๐Ÿ”ฎ Telemedicine appointment booking
  • ๐Ÿ”ฎ Advanced symptom tracking
  • ๐Ÿ”ฎ Personalized health recommendations

๐Ÿฅ Long-term Vision

  • ๐Ÿ”ฎ Integration with Electronic Health Records (EHR)
  • ๐Ÿ”ฎ Real-time vital signs monitoring
  • ๐Ÿ”ฎ AI-powered health trend analysis
  • ๐Ÿ”ฎ Collaboration with healthcare providers

๐Ÿค Contributing

We welcome contributions from developers of all skill levels! MediBot is part of GirlScript Summer of Code (GSSoC) 2025, one of India's largest open-source programs.

๐ŸŒŸ Ways to Contribute

  • ๐Ÿ› Bug Fixes: Help identify and resolve issues
  • โœจ New Features: Implement exciting new functionality
  • ๐Ÿ“š Documentation: Improve guides and API docs
  • ๐ŸŽจ UI/UX: Enhance user experience and design
  • ๐Ÿ”ง Performance: Optimize system efficiency
  • ๐Ÿ”’ Security: Strengthen data protection
  • ๐Ÿงช Testing: Expand test coverage

๐Ÿ“‹ Getting Started

  1. Fork the Repository: Click the fork button on GitHub
  2. Create a Branch: git checkout -b feature/your-feature-name
  3. Make Changes: Implement your improvements
  4. Write Tests: Ensure your changes work correctly
  5. Submit PR: Create a pull request with clear description

๐Ÿ“– Contribution Guidelines

  • Follow the Contributing Guidelines
  • Adhere to the Code of Conduct
  • Ensure medical accuracy and safety in health-related changes
  • Include tests for new functionality
  • Update documentation as needed

๐Ÿ† Recognition

Contributors will be:

  • Listed in our Contributors section
  • Eligible for GSSoC certificates and swag
  • Recognized in release notes
  • Invited to join our community discussions

๐Ÿ™ Acknowledgments

๐ŸŒŸ Special Thanks

  • GirlScript Summer of Code (GSSoC) 2025 for providing an amazing platform for open-source collaboration
  • Google AI for providing access to Gemini models
  • The Medical Community for open medical datasets and knowledge sharing
  • Open Source Contributors who make projects like this possible

๐ŸŽ“ Educational Resources

This project serves as an excellent learning resource for:

  • Modern full-stack development with Python and React
  • Implementing RAG (Retrieval-Augmented Generation) systems
  • Working with vector databases and semantic search
  • Building responsible AI applications for healthcare
  • Docker containerization and microservices architecture

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

The MIT License allows for:

  • โœ… Commercial use
  • โœ… Modification
  • โœ… Distribution
  • โœ… Private use

๐Ÿ‘ฅ Contributors

->Thank you once again to all our contributors who has contributed to AI-health-chatbot! Your efforts are truly appreciated. ๐Ÿ’–๐Ÿ‘

๐Ÿง‘โ€๐Ÿ’ผ Project Admin

Charitha Reddy
Nayini Charitha Reddy

Project Maintainer

๐Ÿ‘จโ€๐Ÿซ Mentors (GSSoC '25)

Anshi Agarwal
Anshi Agarwal

Technical Mentor

๐Ÿค All Contributors

Thanks to all the amazing people who have contributed to MediBot:


๐Ÿ“Š Project Stats

GitHub Stars GitHub Forks GitHub Issues GitHub Pull Requests GitHub Contributors


๐ŸŒŸ Show Your Support

If you find MediBot helpful, please consider:

  • โญ Starring this repository
  • ๐Ÿฆ Sharing on social media
  • ๐Ÿ’ฌ Telling friends and colleagues
  • ๐Ÿค Contributing to the project
  • ๐Ÿ“ Providing feedback and suggestions

๐Ÿ“ž Contact & Support

  • ๐Ÿ› Issues: GitHub Issues
  • ๐Ÿ’ฌ Discussions: GitHub Discussions
  • ๐Ÿ“ง Email: Contact maintainers for collaboration opportunities
  • ๐Ÿ”— LinkedIn: Connect with the project team

๐Ÿš€ Ready to revolutionize healthcare with AI?

Get Started Now | View Documentation | Join the Community


Built with โค๏ธ by the MediBot team and the amazing open-source community

Making healthcare information accessible, one conversation at a time ๐Ÿฅโœจ


About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 17