You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| Goodbye Pip and Poetry. Why UV Might Be All You Need |[🔗](https://codecut.ai/why-uv-might-all-you-need/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog)||
55
56
| Stop Hard Coding in a Data Science Project – Use Configuration Files Instead | [🔗](https://codecut.ai/stop-hard-coding-in-a-data-science-project-use-configuration-files-instead/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/hydra-demo) | [🔗](https://youtu.be/jaX9zrC7y4Y)
56
57
| Poetry: A Better Way to Manage Python Dependencies | [🔗](https://codecut.ai/poetry-a-better-way-to-manage-python-dependencies/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | | [🔗](https://youtu.be/-QSUyDvHQGY)
57
58
| Git for Data Scientists: Learn Git through Practical Examples | [🔗](https://codecut.ai/git-deep-dive-for-data-scientists/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | | [🔗](https://youtu.be/UKCTvrJSoL0)
| Cython-A Speed-Up Tool for your Python Function |[🔗](https://towardsdatascience.com/cython-a-speed-up-tool-for-your-python-function-9bab64364bfd)|[🔗](https://github.com/khuyentran1401/Cython)|
138
140
| Train your Machine Learning Model 150x Faster with cuML | [🔗](https://towardsdatascience.com/train-your-machine-learning-model-150x-faster-with-cuml-69d0768a047a) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/machine-learning/cuml)
| 3 Ways to Extract Features from Dates with Python | [🔗](https://towardsdatascience.com/3-ways-to-extract-features-from-dates-927bd89cd5b9) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/time_series/extract_features/extract_features_from_dates.ipynb)
203
205
| Similarity Encoding for Dirty Categories Using dirty_cat | [🔗](https://towardsdatascience.com/similarity-encoding-for-dirty-categories-using-dirty-cat-d9f0b581a552) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/feature_engineering/dirty_cat_example/employee_salaries.ipynb)
204
206
| Snorkel — A Human-In-The-Loop Platform to Build Training Data | [🔗](https://towardsdatascience.com/snorkel-programmatically-build-training-data-in-python-712fc39649fe) | [🔗](https://github.com/khuyentran1401/Data-science/tree/master/feature_engineering/snorkel_example) | [🔗](https://youtu.be/Prr53wXiHfM)
205
-
| Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames | [🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://github.com/khuyentran1401/Data-science/blob/master/data_science_tools/polars_vs_pandas.py)
207
+
| Polars vs. Pandas: A Fast, Multi-Core Alternative for DataFrames | [🔗](https://codecut.ai/polars-vs-pandas-a-fast-multi-core-alternative-for-dataframes/?utm_source=github&utm_medium=data_science_repo&utm_campaign=blog) | [🔗](https://khuyentran1401.github.io/Data-science/data_science_tools/polars_vs_pandas.html)
0 commit comments