A comprehensive implementation of STARK (Scalable Transparent Argument of Knowledge) proofs with cryptographic-grade security, memory safety, and zero-cost abstractions.
- Field Arithmetic: Type-safe field element operations with constant-time implementations
- Polynomial Operations: Efficient polynomial arithmetic and evaluation
- STARK Proof System: Complete STARK proof generation and verification
- Type System: Comprehensive type definitions for all cryptographic operations
- Constant-time cryptographic operations
- Secure secret management with zeroization
- Type-level prevention of timing attacks
- Memory safety through Rust's type system
- Comprehensive error handling with Result types
- Zero-cost abstractions for all operations
- Optimized field arithmetic implementations
- Efficient polynomial evaluation algorithms
- Minimal runtime overhead for type safety
- Rust 1.70+ (Install Rust)
- Cargo (comes with Rust)
# Clone the repository
git clone https://github.com/ColinRitman/xfgwin.git
cd xfgwinter
# Build the project
cargo build
# Run tests
cargo test
# Run benchmarks
cargo bench
xfgwin/
βββ src/
β βββ lib.rs # Main library entry point
β βββ types/ # Type system definitions
β β βββ mod.rs # Type system module
β β βββ field.rs # Field element types
β β βββ polynomial.rs # Polynomial types
β β βββ stark.rs # STARK proof types
β β βββ secret.rs # Secret management types
β βββ field/ # Field arithmetic implementations
β βββ polynomial/ # Polynomial arithmetic implementations
β βββ stark/ # STARK proof implementations
β βββ utils/ # Utility functions
βββ tests/ # Integration tests
βββ benches/ # Performance benchmarks
βββ docs/ # Documentation
use xfg_stark::types::field::PrimeField64;
// Create field elements
let a = PrimeField64::new(5);
let b = PrimeField64::new(3);
// Perform arithmetic operations
let sum = a + b;
let product = a * b;
let inverse = a.inverse().unwrap();
// Constant-time operations
let ct_sum = a.add_constant_time(&b);
let ct_product = a.mul_constant_time(&b);
use xfg_stark::types::polynomial::FieldPolynomial;
use xfg_stark::types::field::PrimeField64;
// Create polynomials
let coeffs = vec![PrimeField64::new(1), PrimeField64::new(2), PrimeField64::new(1)];
let poly = FieldPolynomial::new(coeffs);
// Evaluate polynomial
let result = poly.evaluate(PrimeField64::new(3));
// Polynomial arithmetic
let poly2 = FieldPolynomial::constant(PrimeField64::new(1));
let sum = poly.add(&poly2);
let product = poly.multiply(&poly2);
use xfg_stark::types::stark::{StarkProof, ExecutionTrace, Air};
use xfg_stark::types::field::PrimeField64;
// Create execution trace
let trace = ExecutionTrace {
columns: vec![vec![PrimeField64::new(1), PrimeField64::new(2)]],
length: 2,
num_registers: 1,
};
// Create AIR constraints
let air = Air {
constraints: vec![],
transition: TransitionFunction {
coefficients: vec![vec![PrimeField64::new(1)]],
degree: 1,
},
boundary: BoundaryConditions { constraints: vec![] },
security_parameter: 128,
};
// Create STARK proof
let proof = StarkProof {
trace,
air,
commitments: vec![],
fri_proof: FriProof {
layers: vec![],
final_polynomial: vec![PrimeField64::new(1)],
queries: vec![],
},
metadata: ProofMetadata {
version: 1,
security_parameter: 128,
field_modulus: "0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47".to_string(),
proof_size: 1024,
timestamp: 1234567890,
},
};
cargo test
# Field arithmetic tests
cargo test field
# Polynomial tests
cargo test polynomial
# STARK proof tests
cargo test stark
# Secret management tests
cargo test secret
cargo bench
Generate and view API documentation:
cargo doc --open
The implementation is based on:
- STARK Proofs: Scalable Transparent Arguments of Knowledge
- Field Arithmetic: Finite field operations for cryptographic security
- Polynomial Commitment Schemes: Efficient polynomial evaluation and commitment
- FRI Protocol: Fast Reed-Solomon Interactive Oracle Proof
We welcome contributions! Please see our Contributing Guidelines for details.
This project is licensed under MIT License - see the LICENSE file for details.
- Winterfell by Meta: cryptographic primitives and STARK implementation patterns
2025 Β© Elderfire Privacy Group
2025 Β© USEXFG
Winter is coming