Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 6 additions & 22 deletions modelskill/comparison/_comparison.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,8 @@
from .. import Quantity
from ..types import GeometryType
from ..obs import PointObservation, TrackObservation
from ..model import PointModelResult
from ..timeseries._timeseries import _validate_data_var_name, TimeSeries
from ..model import PointModelResult, TrackModelResult
from ..timeseries._timeseries import _validate_data_var_name
from ._comparer_plotter import ComparerPlotter
from ..metrics import _parse_metric

Expand Down Expand Up @@ -456,14 +456,13 @@ class Comparer(Scoreable):
"""

data: xr.Dataset
raw_mod_data: Dict[str, PointModelResult]
_obs_str = "Observation"
plotter = ComparerPlotter

def __init__(
self,
matched_data: xr.Dataset,
raw_mod_data: Optional[Dict[str, PointModelResult]] = None,
raw_mod_data: dict[str, PointModelResult | TrackModelResult] | None = None,
) -> None:
self.data = _parse_dataset(matched_data)
self.raw_mod_data = (
Expand All @@ -476,29 +475,14 @@ def __init__(
if value.attrs["kind"] == "model"
}
)
# TODO: validate that the names in raw_mod_data are the same as in matched_data
assert isinstance(self.raw_mod_data, dict)
for k in self.raw_mod_data.keys():
v = self.raw_mod_data[k]
if not isinstance(v, TimeSeries):
try:
self.raw_mod_data[k] = TimeSeries(v)
except Exception:
raise ValueError(
f"raw_mod_data[{k}] could not be converted to a TimeSeries object"
)
else:
assert isinstance(
v, TimeSeries
), f"raw_mod_data[{k}] must be a TimeSeries object"

self.plot = Comparer.plotter(self)
"""Plot using the [](`~modelskill.comparison.ComparerPlotter`)"""

@staticmethod
def from_matched_data(
data: xr.Dataset | pd.DataFrame,
raw_mod_data: Optional[Dict[str, PointModelResult]] = None,
raw_mod_data: Optional[Dict[str, PointModelResult | TrackModelResult]] = None,
obs_item: str | int | None = None,
mod_items: Optional[Iterable[str | int]] = None,
aux_items: Optional[Iterable[str | int]] = None,
Expand Down Expand Up @@ -770,7 +754,7 @@ def _to_observation(self) -> PointObservation | TrackObservation:
else:
raise NotImplementedError(f"Unknown gtype: {self.gtype}")

def _to_model(self) -> list[PointModelResult]:
def _to_model(self) -> list[PointModelResult | TrackModelResult]:
mods = list(self.raw_mod_data.values())
return mods

Expand Down Expand Up @@ -1291,7 +1275,7 @@ def load(filename: Union[str, Path]) -> "Comparer":
return Comparer(matched_data=data)

if data.gtype == "point":
raw_mod_data: Dict[str, PointModelResult] = {}
raw_mod_data: Dict[str, PointModelResult | TrackModelResult] = {}

for var in data.data_vars:
var_name = str(var)
Expand Down
56 changes: 42 additions & 14 deletions modelskill/matching.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,8 @@
from datetime import timedelta
from pathlib import Path
from typing import (
Any,
Collection,
Iterable,
List,
Literal,
Mapping,
Optional,
Expand All @@ -22,14 +20,16 @@
import pandas as pd
import xarray as xr

from modelskill.model.point import PointModelResult

from . import Quantity, __version__, model_result
from .comparison import Comparer, ComparerCollection
from .model._base import Alignable
from .model.dfsu import DfsuModelResult
from .model.dummy import DummyModelResult
from .model.grid import GridModelResult
from .model.track import TrackModelResult
from .obs import Observation, observation
from .obs import Observation, PointObservation, TrackObservation, observation
from .timeseries import TimeSeries
from .types import Period

Expand Down Expand Up @@ -301,15 +301,22 @@ def _single_obs_compare(
spatial_method: Optional[str] = None,
) -> Comparer:
"""Compare a single observation with multiple models"""
obs = _parse_single_obs(obs, obs_item, gtype=gtype)
observation = _parse_single_obs(obs, obs_item, gtype=gtype)

mods = _parse_models(mod, mod_item, gtype=gtype)

raw_mod_data = {m.name: m.extract(obs, spatial_method) for m in mods}
raw_mod_data: dict[str, PointModelResult | TrackModelResult] = {}
for m in mods:
if isinstance(m, (DfsuModelResult, GridModelResult, DummyModelResult)):
raw_mod_data[m.name] = m.extract(observation, spatial_method=spatial_method)
elif isinstance(m, (PointModelResult, TrackModelResult)):
raw_mod_data[m.name] = m
else:
pass
matched_data = match_space_time(
observation=obs, raw_mod_data=raw_mod_data, max_model_gap=max_model_gap
observation=observation, raw_mod_data=raw_mod_data, max_model_gap=max_model_gap
)
matched_data.attrs["weight"] = obs.weight
matched_data.attrs["weight"] = observation.weight

# TODO where does this line belong?
matched_data.attrs["modelskill_version"] = __version__
Expand Down Expand Up @@ -393,8 +400,8 @@ def _parse_single_obs(
obs: ObsInputType,
obs_item: Optional[int | str],
gtype: Optional[GeometryTypes],
) -> Observation:
if isinstance(obs, Observation):
) -> PointObservation | TrackObservation:
if isinstance(obs, (PointObservation, TrackObservation)):
if obs_item is not None:
raise ValueError(
"obs_item argument not allowed if obs is an modelskill.Observation type"
Expand All @@ -406,10 +413,16 @@ def _parse_single_obs(


def _parse_models(
mod: Any, # TODO
mod: MRInputType | Sequence[MRInputType],
item: Optional[IdxOrNameTypes] = None,
gtype: Optional[GeometryTypes] = None,
) -> List[Any]: # TODO
) -> list[
PointModelResult
| TrackModelResult
| GridModelResult
| DfsuModelResult
| DummyModelResult
]:
"""Return a list of ModelResult objects"""
if isinstance(mod, get_args(MRInputType)):
return [_parse_single_model(mod, item=item, gtype=gtype)]
Expand All @@ -420,10 +433,16 @@ def _parse_models(


def _parse_single_model(
mod: Any, # TODO
mod: MRInputType,
item: Optional[IdxOrNameTypes] = None,
gtype: Optional[GeometryTypes] = None,
) -> Any: # TODO
) -> (
PointModelResult
| TrackModelResult
| GridModelResult
| DfsuModelResult
| DummyModelResult
):
if isinstance(
mod,
(
Expand All @@ -447,5 +466,14 @@ def _parse_single_model(
else:
if item is not None:
raise ValueError("item argument not allowed if mod is a ModelResult type")
# assume it is already a model result
assert isinstance(
mod,
(
PointModelResult,
TrackModelResult,
GridModelResult,
DfsuModelResult,
DummyModelResult,
),
)
return mod
13 changes: 1 addition & 12 deletions modelskill/model/point.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import xarray as xr
import pandas as pd

from ..obs import Observation, PointObservation
from ..obs import Observation
from ..types import PointType
from ..quantity import Quantity
from ..timeseries import TimeSeries, _parse_point_input
Expand Down Expand Up @@ -71,17 +71,6 @@ def __init__(
data[data_var].attrs["kind"] = "model"
super().__init__(data=data)

def extract(
self, obs: PointObservation, spatial_method: Optional[str] = None
) -> PointModelResult:
if not isinstance(obs, PointObservation):
raise ValueError(f"obs must be a PointObservation not {type(obs)}")
if spatial_method is not None:
raise NotImplementedError(
"spatial interpolation not possible when matching point model results with point observations"
)
return self

def interp_time(self, observation: Observation, **kwargs: Any) -> PointModelResult:
"""
Interpolate model result to the time of the observation
Expand Down
13 changes: 1 addition & 12 deletions modelskill/model/track.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import numpy as np
import xarray as xr

from ..obs import Observation, TrackObservation
from ..obs import Observation
from ..types import TrackType
from ..quantity import Quantity
from ..timeseries import TimeSeries, _parse_track_input
Expand Down Expand Up @@ -72,17 +72,6 @@ def __init__(
data[data_var].attrs["kind"] = "model"
super().__init__(data=data)

def extract(
self, obs: TrackObservation, spatial_method: Optional[str] = None
) -> TrackModelResult:
if not isinstance(obs, TrackObservation):
raise ValueError(f"obs must be a TrackObservation not {type(obs)}")
if spatial_method is not None:
raise NotImplementedError(
"spatial interpolation not possible when matching track model results with track observations"
)
return self

def align(self, observation: Observation, **kwargs: Any) -> xr.Dataset:
spatial_tolerance = 1e-3

Expand Down
2 changes: 1 addition & 1 deletion modelskill/obs.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def observation(
*,
gtype: Optional[Literal["point", "track"]] = None,
**kwargs,
):
) -> PointObservation | TrackObservation:
"""Create an appropriate observation object.

A factory function for creating an appropriate observation object
Expand Down
9 changes: 5 additions & 4 deletions modelskill/timeseries/_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,12 +80,12 @@ def _parse_point_input(

# parse items
if isinstance(data, (mikeio.DataArray, pd.Series, xr.DataArray)):
item_name = data.name if hasattr(data, "name") else "PointModelResult"
item_name = data.name if data.name is not None else "PointModelResult"
if item is not None:
raise ValueError(f"item must be None when data is a {type(data)}")
if aux_items is not None:
raise ValueError(f"aux_items must be None when data is a {type(data)}")
sel_items = PointItem(values=item_name, aux=[])
sel_items = PointItem(values=str(item_name), aux=[])

if isinstance(data, mikeio.DataArray):
data = mikeio.Dataset([data])
Expand Down Expand Up @@ -135,8 +135,9 @@ def _parse_point_input(

assert isinstance(ds, xr.Dataset)

name = name or item_name
name = _validate_data_var_name(name)
varname = name or item_name
assert isinstance(varname, str)
name = _validate_data_var_name(varname)

n_unique_times = len(ds.time.to_index().unique())
if n_unique_times < len(ds.time):
Expand Down
12 changes: 10 additions & 2 deletions tests/test_comparer.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
from modelskill.comparison import Comparer
from modelskill import __version__
import modelskill as ms
from modelskill.model.point import PointModelResult
from modelskill.model.track import TrackModelResult


@pytest.fixture
Expand Down Expand Up @@ -60,7 +62,10 @@ def pc() -> Comparer:
data.coords["z"] = np.nan
data = _set_attrs(data)

raw_data = {"m1": data[["m1"]], "m2": data[["m2"]]}
raw_data = {
"m1": PointModelResult(data[["m1"]]),
"m2": PointModelResult(data[["m2"]]),
}

data = data.dropna(dim="time")

Expand All @@ -78,7 +83,10 @@ def tc() -> Comparer:
data.attrs["name"] = "fake track obs"
data = _set_attrs(data)

raw_data = {"m1": data[["m1"]], "m2": data[["m2"]]}
raw_data = {
"m1": TrackModelResult(data[["m1"]]),
"m2": TrackModelResult(data[["m2"]]),
}

data = data.dropna(dim="time")
return Comparer(matched_data=data, raw_mod_data=raw_data)
Expand Down
13 changes: 5 additions & 8 deletions tests/test_comparercollection.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,10 @@ def pc() -> modelskill.comparison.Comparer:
data.coords["z"] = np.nan
data = _set_attrs(data)

raw_data = {"m1": data[["m1"]].copy(), "m2": data[["m2"]].copy()}
raw_data = {
"m1": PointModelResult(data[["m1"]].copy()),
"m2": PointModelResult(data[["m2"]].copy()),
}

data = data.dropna(dim="time")
return modelskill.comparison.Comparer(matched_data=data, raw_mod_data=raw_data)
Expand Down Expand Up @@ -86,14 +89,8 @@ def tc() -> modelskill.comparison.Comparer:
data["m3"].attrs["kind"] = "model"
data = _set_attrs(data)

raw_data = {
"m1": data[["m1"]].copy(),
"m2": data[["m2"]].copy(),
"m3": data[["m3"]].copy(),
}

data = data.dropna(dim="time")
return modelskill.comparison.Comparer(matched_data=data, raw_mod_data=raw_data)
return modelskill.comparison.Comparer(matched_data=data)


@pytest.fixture
Expand Down
Loading