Skip to content

DataScientest-Studio/MAR24_BDS_Radios_Pulmonaire

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Science Project: COVID Lung X-Rays Classification

View the streamlit app on Huggingface 🤗


This project was made during the Data Scientist course of Datascientest, and uses the COVID-QU-Ex dataset available on Kaggle: https://www.kaggle.com/datasets/anasmohammedtahir/covidqu

[1] A. M. Tahir, M. E. H. Chowdhury, A. Khandakar, Y. Qiblawey, U. Khurshid, S. Kiranyaz, N. Ibtehaz, M. S. Rahman, S. Al-Madeed, S. Mahmud, M. Ezeddin, K. Hameed, and T. Hamid, “COVID-19 Infection Localization and Severity Grading from Chest X-ray Images”, Computers in Biology and Medicine, vol. 139, p. 105002, 2021, https://doi.org/10.1016/j.compbiomed.2021.105002.
[2] Anas M. Tahir, Muhammad E. H. Chowdhury, Yazan Qiblawey, Amith Khandakar, Tawsifur Rahman, Serkan Kiranyaz, Uzair Khurshid, Nabil Ibtehaz, Sakib Mahmud, and Maymouna Ezeddin, “COVID-QU-Ex .” Kaggle, 2021, https://doi.org/10.34740/kaggle/dsv/3122958.
[3] T. Rahman, A. Khandakar, Y. Qiblawey A. Tahir S. Kiranyaz, S. Abul Kashem, M. Islam, S. Al Maadeed, S. Zughaier, M. Khan, M. Chowdhury, "Exploring the Effect of Image Enhancement Techniques on COVID-19 Detection using Chest X-rays Images," Computers in Biology and Medicine, p. 104319, 2021, https://doi.org/10.1016/j.compbiomed.2021.104319.
[4] A. Degerli, M. Ahishali, M. Yamac, S. Kiranyaz, M. E. H. Chowdhury, K. Hameed, T. Hamid, R. Mazhar, and M. Gabbouj, "Covid-19 infection map generation and detection from chest X-ray images," Health Inf Sci Syst 9, 15 (2021), https://doi.org/10.1007/s13755-021-00146-8.
[5] M. E. H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, K. R. Islam, M. S. Khan, A. Iqbal, N. A. Emadi, M. B. I. Reaz, M. T. Islam, "Can AI Help in Screening Viral and COVID-19 Pneumonia?," IEEE Access, vol. 8, pp. 132665-132676, 2020, https://doi.org/10.1109/ACCESS.2020.3010287.


Team:

supervised by: Gaël Penessot


How to deploy the streamlit app on Huggingface:

  • Create a new space on Huggingface and clone the repository
  • Push the content of the src/streamlit directory
  • Add the model's weights file to the models folder
  • Store the model weights in Git LFS by adding the following line to the .gitattributes file:
    *.h5 filter=lfs diff=lfs merge=lfs -text
  • Push to Huggingface
  • Do not modify or delete the REAMDE.md file created by Huggingface during the initialization on the space.

Project Organization

├── LICENSE
├── README.md          <- The top-level README for developers using this project.
├── data               <- Should be in your computer but not on Github (only in .gitignore)
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── demo               <- Samples from the dataset for demonstration in streamlit
│
├── models             <- Trained and serialized models, model predictions, or model summaries, not on Github for size reasons
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's name, and a short `-` delimited description, e.g.
│                         `1.0-alban-data-exploration`.
│
│
├── reports            <- The final report made during this project (PDF)
│
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │   
│   │── streamlit      <- Scripts for the Streamlit app
│   │
│   ├── visualization  <- Scripts to create exploratory and results oriented visualizations
│   │   └── visualize.py

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 5