Skip to content

DevrajPokhrel3/RNA_Seq_Denovo_Based_Sequencing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 

Repository files navigation

🧬 De novo RNA-seq Assembly and Differential Expression Analysis

This repository documents a de novo RNA-seq transcriptome analysis pipeline using Trinity, RSEM, edgeR, TransDecoder, and BLAST+.
It is designed for tumor-free and tumor-bearing Drosophila melanogaster larvae samples.


πŸ“‚ Dataset Information

  • Organism: Drosophila melanogaster
  • Conditions:
    • Control (tumor-free larvae)
    • Treated (tumor-bearing larvae)
  • Input Data: Adapter-trimmed paired-end FASTQ files

πŸ”§ Tools & Dependencies

Make sure the following tools are installed before running the pipeline:


πŸš€ Workflow Overview

Steps

  1. Concatenate FASTQ samples
  2. Convert FASTQ β†’ FASTA
  3. Perform de novo assembly with Trinity
  4. Calculate assembly statistics (assembly-stats)
  5. Estimate transcript abundance with RSEM
  6. Generate count matrix (abundance_estimates_to_matrix.pl)
  7. Perform differential expression with edgeR
  8. Predict coding regions with TransDecoder
  9. Functional annotation with BLASTp (against UniProt)

πŸ“Š Outputs

  • Assembly: Trinity.fasta, Assembly_Statistics.txt
  • Abundance Estimates: RSEM output directories
  • Count Matrix: abundance_count.isoform.counts.matrix
  • Differential Expression: edgeR results (DE_results.txt)
  • Predicted ORFs: TransDecoder .pep and .cds files
  • Functional Annotation: BLAST results (result.txt)

πŸ“– References


✍️ Author

Devraj Pokhrel
B.Sc. Biotechnology

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published