|
21 | 21 | #' The supplementary data of the study by Chernozhukov et al. (2018) is available at [https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data](https://academic.oup.com/ectj/article/21/1/C1/5056401#supplementary-data). |
22 | 22 | #' @references Abadie, A. (2003), Semiparametric instrumental variable estimation of treatment response models. Journal of Econometrics, 113(2): 231-263. |
23 | 23 | #' |
24 | | -#' @references Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. doi:[10.1111/ectj.12097](https://doi.org/10.1111/ectj.12097). |
| 24 | +#' @references Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. \doi{10.1111/ectj.12097}. |
25 | 25 | #' |
26 | 26 | #' @param return_type (`character(1)`) \cr |
27 | 27 | #' If `"DoubleMLData"`, returns a `DoubleMLData` object. If `"data.frame"` returns a `data.frame()`. If `"data.table"` returns a `data.table()`. Default is `"DoubleMLData"`. |
@@ -96,7 +96,7 @@ fetch_401k = function(return_type = "DoubleMLData", polynomial_features = FALSE) |
96 | 96 | #' |
97 | 97 | #' @references Bilias Y. (2000), Sequential Testing of Duration Data: The Case of Pennsylvania ‘Reemployment Bonus’ Experiment. Journal of Applied Econometrics, 15(6): 575-594. |
98 | 98 | #' |
99 | | -#' @references Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. doi:[10.1111/ectj.12097](https://doi.org/10.1111/ectj.12097). |
| 99 | +#' @references Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. \doi{10.1111/ectj.12097}. |
100 | 100 | #' |
101 | 101 | #' @param return_type (`character(1)`) \cr |
102 | 102 | #' If `"DoubleMLData"`, returns a `DoubleMLData` object. If `"data.frame"` returns a `data.frame()`. If `"data.table"` returns a `data.table()`. Default is `"DoubleMLData"`. |
@@ -182,7 +182,7 @@ g = function(x){ |
182 | 182 | #' |
183 | 183 | #' \eqn{g_0(x_i) = b_0 \frac{\exp(x_{i,1})}{1+\exp(x_{i,1})} + b_1 x_{i,3}.} |
184 | 184 | #' |
185 | | -#' @references Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. doi:[10.1111/ectj.12097](https://doi.org/10.1111/ectj.12097). |
| 185 | +#' @references Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68. \doi{10.1111/ectj.12097}. |
186 | 186 | #' |
187 | 187 | #' @param n_obs (`integer(1)`) \cr |
188 | 188 | #' The number of observations to simulate. |
@@ -492,7 +492,7 @@ make_irm_data = function(n_obs = 500, dim_x = 20, theta = 0, R2_d = 0.5, R2_y = |
492 | 492 | #' |
493 | 493 | #' The data generating process is inspired by a process used in the simulation experiment of Farbmacher, Gruber and Klaaßen (2020). |
494 | 494 | #' |
495 | | -#' @references Farbmacher, H., Guber, R. and Klaaßen, S. (2020). Instrument Validity Tests with Causal Forests. MEA Discussion Paper No. 13-2020. Available at SSRN: [http://dx.doi.org/10.2139/ssrn.3619201](http://dx.doi.org/10.2139/ssrn.3619201). |
| 495 | +#' @references Farbmacher, H., Guber, R. and Klaaßen, S. (2020). Instrument Validity Tests with Causal Forests. MEA Discussion Paper No. 13-2020. Available at SSRN: \doi{10.2139/ssrn.3619201}. |
496 | 496 | #' |
497 | 497 | #' @param n_obs (`integer(1)`) \cr |
498 | 498 | #' The number of observations to simulate. |
|
0 commit comments