|
14 | 14 | #' |
15 | 15 | #' \eqn{Z = m_0(X) + V}, |
16 | 16 | #' |
17 | | -#' with \eqn{\mathbb{E}[\zeta|X,Z]=0} and \eqn{\mathbb{E}[V|X] = 0}. \eqn{Y} is the outcome variable, \eqn{D \in \{0,1\}} is the binary treatment variable and \eqn{Z \in \{0,1\}} is a binary instrumental variable. Consider the functions \eqn{g_0}, \eqn{r_0} and \eqn{m_0}, where \eqn{g_0} maps the support of \eqn{(Z,X)} to \eqn{\mathbb{R}} and \eqn{r_0} and \eqn{m_0}, respectively, map the support of \eqn{(Z,X)} and \eqn{X} to \eqn{(\epsilon, 1-\epsilon)} for some \eqn{\epsilon \in (1, 1/2)}, such that |
| 17 | +#' with \eqn{E[\zeta|X,Z]=0} and \eqn{E[V|X] = 0}. \eqn{Y} is the outcome variable, \eqn{D \in \{0,1\}} is the binary treatment variable and \eqn{Z \in \{0,1\}} is a binary instrumental variable. Consider the functions \eqn{g_0}, \eqn{r_0} and \eqn{m_0}, where \eqn{g_0} maps the support of \eqn{(Z,X)} to \eqn{R} and \eqn{r_0} and \eqn{m_0}, respectively, map the support of \eqn{(Z,X)} and \eqn{X} to \eqn{(\epsilon, 1-\epsilon)} for some \eqn{\epsilon \in (1, 1/2)}, such that |
18 | 18 | #' |
19 | 19 | #' \eqn{Y = g_0(D,X) + \zeta,} |
20 | 20 | #' |
21 | 21 | #' \eqn{D = r_0(D,X) + U,} |
22 | 22 | #' |
23 | 23 | #' \eqn{Z = m_0(X) + V,} |
24 | 24 | #' |
25 | | -#' with \eqn{\mathbb{E}[\zeta|Z,X]=0}, \eqn{\mathbb{E}[U|Z,X]=0} and \eqn{\mathbb{E}[V|X]=0}. The target parameter of interest in this model is the local average treatment effect (LATE), |
| 25 | +#' with \eqn{E[\zeta|Z,X]=0}, \eqn{E[U|Z,X]=0} and \eqn{E[V|X]=0}. The target parameter of interest in this model is the local average treatment effect (LATE), |
26 | 26 | #' |
27 | | -#' \eqn{\theta_0 = \frac{\mathbb{E}[g_0(1,X)] - \mathbb{E}[g_0(0,X)]}{\mathbb{E}[r(1,X)] - \mathbb{E}[r(0,X)]}.} |
| 27 | +#' \eqn{\theta_0 = \frac{E[g_0(1,X)] - E[g_0(0,X)]}{E[r(1,X)] - E[r(0,X)]}.} |
28 | 28 | #' |
29 | 29 | #' |
30 | 30 | #' @usage NULL |
@@ -65,17 +65,17 @@ DoubleMLIIVM =R6:: R6Class("DoubleMLIIVM", inherit = DoubleML, public = list( |
65 | 65 | #' @param ml_g ([`LearnerRegr`][mlr3::LearnerRegr], `character(1)`) \cr |
66 | 66 | #' An object of the class [mlr3 regression learner][mlr3::LearnerRegr] to pass a learner, possibly with specified parameters, for example `lrn(regr.cv_glmnet, s = "lambda.min")`. |
67 | 67 | #' Alternatively, a `character(1)` specifying the name of a [mlr3 regression learner][mlr3::LearnerRegr] that is available in [mlr3](https://mlr3.mlr-org.com/index.html) or its extension packages [mlr3learners](https://mlr3learners.mlr-org.com/) or [mlr3extralearners](https://mlr3extralearners.mlr-org.com/), for example `"regr.cv_glmnet"`. \cr |
68 | | - #' `ml_g` refers to the nuisance function \eqn{g_0(Z,X) = \mathbb{E}[Y|X,Z]}. |
| 68 | + #' `ml_g` refers to the nuisance function \eqn{g_0(Z,X) = E[Y|X,Z]}. |
69 | 69 | #' |
70 | 70 | #' @param ml_m ([`LearnerClassif`][mlr3::LearnerClassif], `character(1)`) \cr |
71 | 71 | #' An object of the class [mlr3 classification learner][mlr3::LearnerClassif] to pass a learner, possibly with specified parameters, for example `lrn(classif.cv_glmnet, s = "lambda.min")`. |
72 | 72 | #' Alternatively, a `character(1)` specifying the name of a [mlr3 classification learner][mlr3::LearnerClassif] that is available in [mlr3](https://mlr3.mlr-org.com/index.html) or its extension packages [mlr3learners](https://mlr3learners.mlr-org.com/) or [mlr3extralearners](https://mlr3extralearners.mlr-org.com/), for example `"regr.cv_glmnet"`. \cr |
73 | | - #' `ml_m` refers to the nuisance function \eqn{m_0(X) = \mathbb{E}[Z|X]}. |
| 73 | + #' `ml_m` refers to the nuisance function \eqn{m_0(X) = E[Z|X]}. |
74 | 74 | #' |
75 | 75 | #' @param ml_r ([`LearnerClassif`][mlr3::LearnerClassif], `character(1)`) \cr |
76 | 76 | #' An object of the class [mlr3 classification learner][mlr3::LearnerClassif] to pass a learner, possibly with specified parameters, for example `lrn(classif.cv_glmnet, s = "lambda.min")`. |
77 | 77 | #' Alternatively, a `character(1)` specifying the name of a [mlr3 classification learner][mlr3::LearnerClassif] that is available in [mlr3](https://mlr3.mlr-org.com/index.html) or its extension packages [mlr3learners](https://mlr3learners.mlr-org.com/) or [mlr3extralearners](https://mlr3extralearners.mlr-org.com/), for example `"regr.cv_glmnet"`. \cr |
78 | | - #' `ml_r` refers to the nuisance function \eqn{r_0(Z,X) = \mathbb{E}[D|X,Z]}. |
| 78 | + #' `ml_r` refers to the nuisance function \eqn{r_0(Z,X) = E[D|X,Z]}. |
79 | 79 | #' |
80 | 80 | #' @param n_folds (`integer(1)`)\cr |
81 | 81 | #' Number of folds. Default is `5`. |
|
0 commit comments