Skip to content

Commit 4dde749

Browse files
committed
Real-World Stress Testing Assignment & Automation
📋 COMPREHENSIVE STRESS TEST ASSIGNMENT: - 5 realistic test scenarios (AI inference, thermal, memory, concurrent, edge) - 48-hour testing protocol with automated monitoring - Performance measurement framework with metrics collection - Detailed reporting requirements and acceptance criteria 🤖 AUTOMATED TEST EXECUTION: - run_stress_tests.sh: Complete automation script - Performance monitoring with CSV data collection - Concurrent user simulation for Q CLI load testing - Automated report generation with analysis commands 🎯 REAL-WORLD VALIDATION: - AI inference workload simulation - Thermal stress with prediction accuracy testing - Memory leak detection over extended periods - Production readiness assessment criteria 🏆 DELIVERABLES: - Executive summary report template - Technical performance analysis framework - Failure analysis procedures - Production deployment recommendations
1 parent f285153 commit 4dde749

File tree

2 files changed

+676
-0
lines changed

2 files changed

+676
-0
lines changed

STRESS_TEST_ASSIGNMENT.md

Lines changed: 302 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,302 @@
1+
# Real-World Stress Testing Assignment
2+
**Date**: 2025-09-21 03:41:12 UTC-07:00
3+
**Target**: AI-Enhanced Jetson MCP Server
4+
**Objective**: Validate production readiness under real-world conditions
5+
6+
## 🎯 ASSIGNMENT OVERVIEW
7+
8+
**Mission**: Stress test the AI-Enhanced Jetson MCP Server under realistic edge AI workloads to validate:
9+
1. Performance under sustained AI inference loads
10+
2. Thermal management during extended operation
11+
3. Memory leak detection over 24+ hours
12+
4. Predictive accuracy of AI diagnostics
13+
5. MCP server stability during high Q CLI usage
14+
15+
## 📋 TEST SCENARIOS
16+
17+
### SCENARIO 1: AI Inference Load Test (2 hours)
18+
**Objective**: Test system under sustained AI workload
19+
**Setup**:
20+
```bash
21+
# Install stress testing tools
22+
sudo apt install stress-ng htop iotop
23+
24+
# Create AI workload simulator
25+
docker run --gpus all -d --name ai-stress \
26+
nvcr.io/nvidia/pytorch:22.12-py3 \
27+
python3 -c "
28+
import torch
29+
import time
30+
model = torch.randn(1000, 1000).cuda()
31+
while True:
32+
result = torch.mm(model, model)
33+
time.sleep(0.1)
34+
"
35+
```
36+
37+
**Test Protocol**:
38+
1. Start AI workload simulator
39+
2. Monitor via MCP tools every 5 minutes for 2 hours
40+
3. Record: `cuda_analysis`, `thermal_intelligence`, `ai_system_diagnosis`
41+
4. Verify predictive alerts trigger correctly
42+
43+
**Success Criteria**:
44+
- MCP server responds within 2 seconds throughout test
45+
- Thermal predictions accurate within 10% of actual
46+
- No memory leaks in MCP server process
47+
- AI diagnostics correctly identify workload patterns
48+
49+
### SCENARIO 2: Thermal Stress Test (4 hours)
50+
**Objective**: Validate thermal management and predictions
51+
**Setup**:
52+
```bash
53+
# Maximum thermal load
54+
sudo nvpmodel -m 0 # MAXN mode
55+
sudo jetson_clocks # Max clocks
56+
stress-ng --cpu 4 --gpu 1 --timeout 4h &
57+
58+
# Monitor thermal zones
59+
watch -n 30 'cat /sys/class/thermal/thermal_zone*/temp'
60+
```
61+
62+
**Test Protocol**:
63+
1. Run thermal stress for 4 hours
64+
2. Use `thermal_intelligence` every 10 minutes
65+
3. Record thermal predictions vs actual throttling
66+
4. Test MCP server stability during thermal events
67+
68+
**Success Criteria**:
69+
- Thermal predictions accurate within 5 minutes of throttling
70+
- MCP server maintains <3 second response during throttling
71+
- No thermal shutdowns occur
72+
- Cooling recommendations are actionable
73+
74+
### SCENARIO 3: Memory Pressure Test (8 hours)
75+
**Objective**: Test memory leak detection and management
76+
**Setup**:
77+
```bash
78+
# Memory pressure simulator
79+
python3 -c "
80+
import time
81+
import numpy as np
82+
data = []
83+
for i in range(1000):
84+
data.append(np.random.rand(1000, 1000))
85+
time.sleep(30) # Gradual memory increase
86+
" &
87+
```
88+
89+
**Test Protocol**:
90+
1. Run memory pressure simulator
91+
2. Monitor with `ai_system_diagnosis` every 15 minutes
92+
3. Test predictive alerts for memory exhaustion
93+
4. Verify MCP server memory usage remains stable
94+
95+
**Success Criteria**:
96+
- Memory predictions accurate within 15 minutes
97+
- MCP server memory usage <100MB throughout
98+
- Predictive alerts trigger before system impact
99+
- Recovery recommendations are effective
100+
101+
### SCENARIO 4: Q CLI Concurrent Usage (1 hour)
102+
**Objective**: Test MCP server under heavy Q CLI load
103+
**Setup**:
104+
```bash
105+
# Concurrent Q CLI sessions simulator
106+
for i in {1..10}; do
107+
(
108+
while true; do
109+
timeout 30s q chat "Use jetson-debug monitor_dashboard" >/dev/null 2>&1
110+
sleep 5
111+
timeout 30s q chat "Use jetson-debug cuda_analysis" >/dev/null 2>&1
112+
sleep 5
113+
done
114+
) &
115+
done
116+
```
117+
118+
**Test Protocol**:
119+
1. Run 10 concurrent Q CLI sessions
120+
2. Monitor MCP server performance
121+
3. Test tool response times under load
122+
4. Verify no race conditions or crashes
123+
124+
**Success Criteria**:
125+
- All tools respond within 5 seconds under load
126+
- No MCP server crashes or hangs
127+
- Memory usage scales linearly with concurrent users
128+
- Error handling graceful under timeout conditions
129+
130+
### SCENARIO 5: Edge Deployment Simulation (24 hours)
131+
**Objective**: Simulate real edge deployment conditions
132+
**Setup**:
133+
```bash
134+
# Simulate edge AI pipeline
135+
docker-compose up -d << EOF
136+
version: '3'
137+
services:
138+
inference:
139+
image: nvcr.io/nvidia/deepstream:6.2-devel
140+
runtime: nvidia
141+
restart: always
142+
monitoring:
143+
image: prom/prometheus
144+
restart: always
145+
data-sync:
146+
image: alpine
147+
command: sh -c "while true; do wget -q google.com; sleep 300; done"
148+
restart: always
149+
EOF
150+
```
151+
152+
**Test Protocol**:
153+
1. Run edge simulation for 24 hours
154+
2. Use all MCP tools every hour
155+
3. Test system learning adaptation
156+
4. Monitor cluster and deployment health tools
157+
158+
**Success Criteria**:
159+
- System learning identifies deployment patterns
160+
- Edge deployment health accurately reports status
161+
- Cloud-edge optimization provides valid recommendations
162+
- 99.9% uptime for MCP server
163+
164+
## 📊 MEASUREMENT FRAMEWORK
165+
166+
### Performance Metrics
167+
```bash
168+
# Create automated measurement script
169+
cat > stress_test_monitor.sh << 'EOF'
170+
#!/bin/bash
171+
LOG_FILE="/tmp/mcp_stress_test_$(date +%Y%m%d_%H%M%S).log"
172+
173+
while true; do
174+
TIMESTAMP=$(date '+%Y-%m-%d %H:%M:%S')
175+
176+
# MCP Response Time Test
177+
START_TIME=$(date +%s.%N)
178+
timeout 10s q chat "Use jetson-debug debug_status" >/dev/null 2>&1
179+
END_TIME=$(date +%s.%N)
180+
RESPONSE_TIME=$(echo "$END_TIME - $START_TIME" | bc)
181+
182+
# System Metrics
183+
CPU=$(top -bn1 | grep "Cpu(s)" | awk '{print $2}' | cut -d'%' -f1)
184+
MEM=$(free | grep Mem | awk '{printf "%.1f", $3/$2 * 100.0}')
185+
186+
# MCP Process Metrics
187+
MCP_PID=$(pgrep -f "debug_server.py")
188+
if [ ! -z "$MCP_PID" ]; then
189+
MCP_MEM=$(ps -p $MCP_PID -o rss= | awk '{print $1/1024}')
190+
MCP_CPU=$(ps -p $MCP_PID -o %cpu= | awk '{print $1}')
191+
else
192+
MCP_MEM=0
193+
MCP_CPU=0
194+
fi
195+
196+
echo "$TIMESTAMP,$RESPONSE_TIME,$CPU,$MEM,$MCP_MEM,$MCP_CPU" >> $LOG_FILE
197+
sleep 60
198+
done
199+
EOF
200+
201+
chmod +x stress_test_monitor.sh
202+
```
203+
204+
### Data Collection Points
205+
- **Response Times**: All MCP tool response times
206+
- **System Metrics**: CPU, Memory, GPU, Thermal
207+
- **MCP Server Health**: Memory usage, CPU usage, crash count
208+
- **Prediction Accuracy**: Predicted vs actual events
209+
- **Error Rates**: Failed requests, timeouts, exceptions
210+
211+
## 🧪 TEST EXECUTION PROTOCOL
212+
213+
### Phase 1: Baseline Establishment (30 minutes)
214+
1. Record normal operation metrics
215+
2. Test all 16 MCP tools individually
216+
3. Establish performance baselines
217+
4. Verify all monitoring systems working
218+
219+
### Phase 2: Individual Stress Tests (16 hours)
220+
1. Execute Scenarios 1-4 sequentially
221+
2. Allow 1-hour recovery between tests
222+
3. Collect continuous metrics
223+
4. Document any failures or anomalies
224+
225+
### Phase 3: Combined Stress Test (24 hours)
226+
1. Run Scenario 5 with monitoring
227+
2. Simulate real-world edge conditions
228+
3. Test system adaptation and learning
229+
4. Validate long-term stability
230+
231+
### Phase 4: Recovery and Analysis (2 hours)
232+
1. Stop all stress tests
233+
2. Analyze collected data
234+
3. Generate performance report
235+
4. Document recommendations
236+
237+
## 📈 REPORTING REQUIREMENTS
238+
239+
### Executive Summary Report
240+
```markdown
241+
# MCP Server Stress Test Results
242+
**Test Duration**: [X] hours
243+
**Test Scenarios**: 5 scenarios completed
244+
**Overall Result**: PASS/FAIL
245+
246+
## Key Findings
247+
- Performance under load: [X]% degradation
248+
- Thermal management: [X]% prediction accuracy
249+
- Memory stability: [X] leaks detected
250+
- Uptime achieved: [X]%
251+
252+
## Critical Issues
253+
1. [Issue description and impact]
254+
2. [Recommended fixes]
255+
256+
## Production Readiness: READY/NOT READY
257+
```
258+
259+
### Technical Performance Report
260+
- **Response Time Analysis**: Min/Max/Average for each tool
261+
- **Resource Usage Trends**: CPU, Memory, GPU over time
262+
- **Prediction Accuracy**: Thermal, Memory, Performance predictions
263+
- **Error Analysis**: Types, frequency, root causes
264+
- **Scalability Assessment**: Performance vs concurrent users
265+
266+
### Failure Analysis Report
267+
- **Crash Reports**: Stack traces, conditions, frequency
268+
- **Performance Degradation**: Bottlenecks identified
269+
- **Memory Leaks**: Growth patterns, affected components
270+
- **Thermal Issues**: Throttling events, cooling effectiveness
271+
272+
## ✅ ACCEPTANCE CRITERIA
273+
274+
### PASS Requirements
275+
- [ ] 99% uptime during 24-hour test
276+
- [ ] <5 second response times under load
277+
- [ ] <2% prediction error rate for thermal/memory
278+
- [ ] Zero memory leaks in MCP server
279+
- [ ] Graceful handling of all error conditions
280+
- [ ] Successful recovery from thermal throttling
281+
- [ ] Accurate system learning and adaptation
282+
283+
### FAIL Conditions
284+
- MCP server crashes during any test
285+
- Response times >10 seconds under normal load
286+
- Memory leaks >10MB/hour in MCP server
287+
- Prediction accuracy <80% for critical alerts
288+
- Data corruption or loss during stress tests
289+
290+
## 🚀 DELIVERABLES
291+
292+
1. **Automated Test Suite**: Scripts for all 5 scenarios
293+
2. **Monitoring Dashboard**: Real-time metrics collection
294+
3. **Performance Report**: Comprehensive analysis with graphs
295+
4. **Failure Analysis**: Root cause analysis for any issues
296+
5. **Production Recommendations**: Deployment guidelines
297+
6. **Optimization Suggestions**: Performance improvements identified
298+
299+
---
300+
**Assignment Created**: 2025-09-21 03:41:12 UTC-07:00
301+
**Estimated Duration**: 48 hours total (16h active testing + 24h monitoring + 8h analysis)
302+
**Success Metric**: Production-ready AI-Enhanced Jetson MCP Server

0 commit comments

Comments
 (0)