|
| 1 | +# Real-World Stress Testing Assignment |
| 2 | +**Date**: 2025-09-21 03:41:12 UTC-07:00 |
| 3 | +**Target**: AI-Enhanced Jetson MCP Server |
| 4 | +**Objective**: Validate production readiness under real-world conditions |
| 5 | + |
| 6 | +## 🎯 ASSIGNMENT OVERVIEW |
| 7 | + |
| 8 | +**Mission**: Stress test the AI-Enhanced Jetson MCP Server under realistic edge AI workloads to validate: |
| 9 | +1. Performance under sustained AI inference loads |
| 10 | +2. Thermal management during extended operation |
| 11 | +3. Memory leak detection over 24+ hours |
| 12 | +4. Predictive accuracy of AI diagnostics |
| 13 | +5. MCP server stability during high Q CLI usage |
| 14 | + |
| 15 | +## 📋 TEST SCENARIOS |
| 16 | + |
| 17 | +### SCENARIO 1: AI Inference Load Test (2 hours) |
| 18 | +**Objective**: Test system under sustained AI workload |
| 19 | +**Setup**: |
| 20 | +```bash |
| 21 | +# Install stress testing tools |
| 22 | +sudo apt install stress-ng htop iotop |
| 23 | + |
| 24 | +# Create AI workload simulator |
| 25 | +docker run --gpus all -d --name ai-stress \ |
| 26 | + nvcr.io/nvidia/pytorch:22.12-py3 \ |
| 27 | + python3 -c " |
| 28 | +import torch |
| 29 | +import time |
| 30 | +model = torch.randn(1000, 1000).cuda() |
| 31 | +while True: |
| 32 | + result = torch.mm(model, model) |
| 33 | + time.sleep(0.1) |
| 34 | +" |
| 35 | +``` |
| 36 | + |
| 37 | +**Test Protocol**: |
| 38 | +1. Start AI workload simulator |
| 39 | +2. Monitor via MCP tools every 5 minutes for 2 hours |
| 40 | +3. Record: `cuda_analysis`, `thermal_intelligence`, `ai_system_diagnosis` |
| 41 | +4. Verify predictive alerts trigger correctly |
| 42 | + |
| 43 | +**Success Criteria**: |
| 44 | +- MCP server responds within 2 seconds throughout test |
| 45 | +- Thermal predictions accurate within 10% of actual |
| 46 | +- No memory leaks in MCP server process |
| 47 | +- AI diagnostics correctly identify workload patterns |
| 48 | + |
| 49 | +### SCENARIO 2: Thermal Stress Test (4 hours) |
| 50 | +**Objective**: Validate thermal management and predictions |
| 51 | +**Setup**: |
| 52 | +```bash |
| 53 | +# Maximum thermal load |
| 54 | +sudo nvpmodel -m 0 # MAXN mode |
| 55 | +sudo jetson_clocks # Max clocks |
| 56 | +stress-ng --cpu 4 --gpu 1 --timeout 4h & |
| 57 | + |
| 58 | +# Monitor thermal zones |
| 59 | +watch -n 30 'cat /sys/class/thermal/thermal_zone*/temp' |
| 60 | +``` |
| 61 | + |
| 62 | +**Test Protocol**: |
| 63 | +1. Run thermal stress for 4 hours |
| 64 | +2. Use `thermal_intelligence` every 10 minutes |
| 65 | +3. Record thermal predictions vs actual throttling |
| 66 | +4. Test MCP server stability during thermal events |
| 67 | + |
| 68 | +**Success Criteria**: |
| 69 | +- Thermal predictions accurate within 5 minutes of throttling |
| 70 | +- MCP server maintains <3 second response during throttling |
| 71 | +- No thermal shutdowns occur |
| 72 | +- Cooling recommendations are actionable |
| 73 | + |
| 74 | +### SCENARIO 3: Memory Pressure Test (8 hours) |
| 75 | +**Objective**: Test memory leak detection and management |
| 76 | +**Setup**: |
| 77 | +```bash |
| 78 | +# Memory pressure simulator |
| 79 | +python3 -c " |
| 80 | +import time |
| 81 | +import numpy as np |
| 82 | +data = [] |
| 83 | +for i in range(1000): |
| 84 | + data.append(np.random.rand(1000, 1000)) |
| 85 | + time.sleep(30) # Gradual memory increase |
| 86 | +" & |
| 87 | +``` |
| 88 | + |
| 89 | +**Test Protocol**: |
| 90 | +1. Run memory pressure simulator |
| 91 | +2. Monitor with `ai_system_diagnosis` every 15 minutes |
| 92 | +3. Test predictive alerts for memory exhaustion |
| 93 | +4. Verify MCP server memory usage remains stable |
| 94 | + |
| 95 | +**Success Criteria**: |
| 96 | +- Memory predictions accurate within 15 minutes |
| 97 | +- MCP server memory usage <100MB throughout |
| 98 | +- Predictive alerts trigger before system impact |
| 99 | +- Recovery recommendations are effective |
| 100 | + |
| 101 | +### SCENARIO 4: Q CLI Concurrent Usage (1 hour) |
| 102 | +**Objective**: Test MCP server under heavy Q CLI load |
| 103 | +**Setup**: |
| 104 | +```bash |
| 105 | +# Concurrent Q CLI sessions simulator |
| 106 | +for i in {1..10}; do |
| 107 | + ( |
| 108 | + while true; do |
| 109 | + timeout 30s q chat "Use jetson-debug monitor_dashboard" >/dev/null 2>&1 |
| 110 | + sleep 5 |
| 111 | + timeout 30s q chat "Use jetson-debug cuda_analysis" >/dev/null 2>&1 |
| 112 | + sleep 5 |
| 113 | + done |
| 114 | + ) & |
| 115 | +done |
| 116 | +``` |
| 117 | + |
| 118 | +**Test Protocol**: |
| 119 | +1. Run 10 concurrent Q CLI sessions |
| 120 | +2. Monitor MCP server performance |
| 121 | +3. Test tool response times under load |
| 122 | +4. Verify no race conditions or crashes |
| 123 | + |
| 124 | +**Success Criteria**: |
| 125 | +- All tools respond within 5 seconds under load |
| 126 | +- No MCP server crashes or hangs |
| 127 | +- Memory usage scales linearly with concurrent users |
| 128 | +- Error handling graceful under timeout conditions |
| 129 | + |
| 130 | +### SCENARIO 5: Edge Deployment Simulation (24 hours) |
| 131 | +**Objective**: Simulate real edge deployment conditions |
| 132 | +**Setup**: |
| 133 | +```bash |
| 134 | +# Simulate edge AI pipeline |
| 135 | +docker-compose up -d << EOF |
| 136 | +version: '3' |
| 137 | +services: |
| 138 | + inference: |
| 139 | + image: nvcr.io/nvidia/deepstream:6.2-devel |
| 140 | + runtime: nvidia |
| 141 | + restart: always |
| 142 | + monitoring: |
| 143 | + image: prom/prometheus |
| 144 | + restart: always |
| 145 | + data-sync: |
| 146 | + image: alpine |
| 147 | + command: sh -c "while true; do wget -q google.com; sleep 300; done" |
| 148 | + restart: always |
| 149 | +EOF |
| 150 | +``` |
| 151 | + |
| 152 | +**Test Protocol**: |
| 153 | +1. Run edge simulation for 24 hours |
| 154 | +2. Use all MCP tools every hour |
| 155 | +3. Test system learning adaptation |
| 156 | +4. Monitor cluster and deployment health tools |
| 157 | + |
| 158 | +**Success Criteria**: |
| 159 | +- System learning identifies deployment patterns |
| 160 | +- Edge deployment health accurately reports status |
| 161 | +- Cloud-edge optimization provides valid recommendations |
| 162 | +- 99.9% uptime for MCP server |
| 163 | + |
| 164 | +## 📊 MEASUREMENT FRAMEWORK |
| 165 | + |
| 166 | +### Performance Metrics |
| 167 | +```bash |
| 168 | +# Create automated measurement script |
| 169 | +cat > stress_test_monitor.sh << 'EOF' |
| 170 | +#!/bin/bash |
| 171 | +LOG_FILE="/tmp/mcp_stress_test_$(date +%Y%m%d_%H%M%S).log" |
| 172 | +
|
| 173 | +while true; do |
| 174 | + TIMESTAMP=$(date '+%Y-%m-%d %H:%M:%S') |
| 175 | + |
| 176 | + # MCP Response Time Test |
| 177 | + START_TIME=$(date +%s.%N) |
| 178 | + timeout 10s q chat "Use jetson-debug debug_status" >/dev/null 2>&1 |
| 179 | + END_TIME=$(date +%s.%N) |
| 180 | + RESPONSE_TIME=$(echo "$END_TIME - $START_TIME" | bc) |
| 181 | + |
| 182 | + # System Metrics |
| 183 | + CPU=$(top -bn1 | grep "Cpu(s)" | awk '{print $2}' | cut -d'%' -f1) |
| 184 | + MEM=$(free | grep Mem | awk '{printf "%.1f", $3/$2 * 100.0}') |
| 185 | + |
| 186 | + # MCP Process Metrics |
| 187 | + MCP_PID=$(pgrep -f "debug_server.py") |
| 188 | + if [ ! -z "$MCP_PID" ]; then |
| 189 | + MCP_MEM=$(ps -p $MCP_PID -o rss= | awk '{print $1/1024}') |
| 190 | + MCP_CPU=$(ps -p $MCP_PID -o %cpu= | awk '{print $1}') |
| 191 | + else |
| 192 | + MCP_MEM=0 |
| 193 | + MCP_CPU=0 |
| 194 | + fi |
| 195 | + |
| 196 | + echo "$TIMESTAMP,$RESPONSE_TIME,$CPU,$MEM,$MCP_MEM,$MCP_CPU" >> $LOG_FILE |
| 197 | + sleep 60 |
| 198 | +done |
| 199 | +EOF |
| 200 | + |
| 201 | +chmod +x stress_test_monitor.sh |
| 202 | +``` |
| 203 | + |
| 204 | +### Data Collection Points |
| 205 | +- **Response Times**: All MCP tool response times |
| 206 | +- **System Metrics**: CPU, Memory, GPU, Thermal |
| 207 | +- **MCP Server Health**: Memory usage, CPU usage, crash count |
| 208 | +- **Prediction Accuracy**: Predicted vs actual events |
| 209 | +- **Error Rates**: Failed requests, timeouts, exceptions |
| 210 | + |
| 211 | +## 🧪 TEST EXECUTION PROTOCOL |
| 212 | + |
| 213 | +### Phase 1: Baseline Establishment (30 minutes) |
| 214 | +1. Record normal operation metrics |
| 215 | +2. Test all 16 MCP tools individually |
| 216 | +3. Establish performance baselines |
| 217 | +4. Verify all monitoring systems working |
| 218 | + |
| 219 | +### Phase 2: Individual Stress Tests (16 hours) |
| 220 | +1. Execute Scenarios 1-4 sequentially |
| 221 | +2. Allow 1-hour recovery between tests |
| 222 | +3. Collect continuous metrics |
| 223 | +4. Document any failures or anomalies |
| 224 | + |
| 225 | +### Phase 3: Combined Stress Test (24 hours) |
| 226 | +1. Run Scenario 5 with monitoring |
| 227 | +2. Simulate real-world edge conditions |
| 228 | +3. Test system adaptation and learning |
| 229 | +4. Validate long-term stability |
| 230 | + |
| 231 | +### Phase 4: Recovery and Analysis (2 hours) |
| 232 | +1. Stop all stress tests |
| 233 | +2. Analyze collected data |
| 234 | +3. Generate performance report |
| 235 | +4. Document recommendations |
| 236 | + |
| 237 | +## 📈 REPORTING REQUIREMENTS |
| 238 | + |
| 239 | +### Executive Summary Report |
| 240 | +```markdown |
| 241 | +# MCP Server Stress Test Results |
| 242 | +**Test Duration**: [X] hours |
| 243 | +**Test Scenarios**: 5 scenarios completed |
| 244 | +**Overall Result**: PASS/FAIL |
| 245 | + |
| 246 | +## Key Findings |
| 247 | +- Performance under load: [X]% degradation |
| 248 | +- Thermal management: [X]% prediction accuracy |
| 249 | +- Memory stability: [X] leaks detected |
| 250 | +- Uptime achieved: [X]% |
| 251 | + |
| 252 | +## Critical Issues |
| 253 | +1. [Issue description and impact] |
| 254 | +2. [Recommended fixes] |
| 255 | + |
| 256 | +## Production Readiness: READY/NOT READY |
| 257 | +``` |
| 258 | + |
| 259 | +### Technical Performance Report |
| 260 | +- **Response Time Analysis**: Min/Max/Average for each tool |
| 261 | +- **Resource Usage Trends**: CPU, Memory, GPU over time |
| 262 | +- **Prediction Accuracy**: Thermal, Memory, Performance predictions |
| 263 | +- **Error Analysis**: Types, frequency, root causes |
| 264 | +- **Scalability Assessment**: Performance vs concurrent users |
| 265 | + |
| 266 | +### Failure Analysis Report |
| 267 | +- **Crash Reports**: Stack traces, conditions, frequency |
| 268 | +- **Performance Degradation**: Bottlenecks identified |
| 269 | +- **Memory Leaks**: Growth patterns, affected components |
| 270 | +- **Thermal Issues**: Throttling events, cooling effectiveness |
| 271 | + |
| 272 | +## ✅ ACCEPTANCE CRITERIA |
| 273 | + |
| 274 | +### PASS Requirements |
| 275 | +- [ ] 99% uptime during 24-hour test |
| 276 | +- [ ] <5 second response times under load |
| 277 | +- [ ] <2% prediction error rate for thermal/memory |
| 278 | +- [ ] Zero memory leaks in MCP server |
| 279 | +- [ ] Graceful handling of all error conditions |
| 280 | +- [ ] Successful recovery from thermal throttling |
| 281 | +- [ ] Accurate system learning and adaptation |
| 282 | + |
| 283 | +### FAIL Conditions |
| 284 | +- MCP server crashes during any test |
| 285 | +- Response times >10 seconds under normal load |
| 286 | +- Memory leaks >10MB/hour in MCP server |
| 287 | +- Prediction accuracy <80% for critical alerts |
| 288 | +- Data corruption or loss during stress tests |
| 289 | + |
| 290 | +## 🚀 DELIVERABLES |
| 291 | + |
| 292 | +1. **Automated Test Suite**: Scripts for all 5 scenarios |
| 293 | +2. **Monitoring Dashboard**: Real-time metrics collection |
| 294 | +3. **Performance Report**: Comprehensive analysis with graphs |
| 295 | +4. **Failure Analysis**: Root cause analysis for any issues |
| 296 | +5. **Production Recommendations**: Deployment guidelines |
| 297 | +6. **Optimization Suggestions**: Performance improvements identified |
| 298 | + |
| 299 | +--- |
| 300 | +**Assignment Created**: 2025-09-21 03:41:12 UTC-07:00 |
| 301 | +**Estimated Duration**: 48 hours total (16h active testing + 24h monitoring + 8h analysis) |
| 302 | +**Success Metric**: Production-ready AI-Enhanced Jetson MCP Server |
0 commit comments