|
| 1 | +# Overview |
| 2 | + |
| 3 | +The longwave radiation in ELM solves the amount of longwave |
| 4 | +radiation absorbed by the ground and the vegetation, and the |
| 5 | +amount of outgoing radiation to the atmosphere (Figure 1). |
| 6 | +The model represents the ground surface as a mixture of snow, |
| 7 | +soil, and standing surface water. The shaded and sunlit leaves |
| 8 | +are combined as a single leaf within the model. The incoming |
| 9 | +longwave atmosphere radiation, $L^\downarrow_{atm}$, is a |
| 10 | +boundary condition for the model. |
| 11 | + |
| 12 | + |
| 13 | + |
| 14 | +Fig 1. Two-stream longwave radiation model for |
| 15 | +(a) non-vegetated and (b) vegetated surfaces. |
| 16 | + |
| 17 | +## Governing Equations For Non-vegetated Surfaces |
| 18 | + |
| 19 | +The emitted longwave radation from ground, $L^{\uparrow}_g$, is |
| 20 | + |
| 21 | +$$ |
| 22 | +\begin{equation} |
| 23 | +L^{\uparrow}_{g} = (1 - \epsilon_g)L^\downarrow_{atm} + \epsilon_g \sigma T_{g}^4 |
| 24 | +\label{eq:lg_up_nonveg} |
| 25 | +\end{equation} |
| 26 | +$$ |
| 27 | + |
| 28 | +where $\epsilon_g$ is the emissivity of the ground, |
| 29 | +$\sigma$ is the Stefan-Boltzmann constant, and |
| 30 | +$T_g$ is the ground temperature. The first term on the |
| 31 | +right-hand side represents the reflected atmospheric longwave |
| 32 | +radiation, while the second term represents the emitted longwave |
| 33 | +radiation by the ground. The emitted longwave radiation is computed as |
| 34 | + |
| 35 | +$$ |
| 36 | +\begin{equation} |
| 37 | +\epsilon_g \sigma T_g^4 = \epsilon_g \sigma \left[ f_{sno} T^4_{sno} + \left( 1 - f_{sno} - f_{h2osfc}\right) T^4_{soi,1} + f_{h2osfc} T^4_{h2osfc} \right] |
| 38 | +\label{eqn:tg} |
| 39 | +\end{equation} |
| 40 | +$$ |
| 41 | + |
| 42 | +where $T_{sno}$, $T_{soi,1}$ and $T_{h2osfc}$ |
| 43 | +the temperature of the top snow layer, the first soil layer, and |
| 44 | +the standing surface water, respectively, and |
| 45 | +$f_{sno}$ and $f_{h2osfc}$ are fraction of snow and |
| 46 | +standing surface water. |
| 47 | + |
| 48 | +The radiation absorbed by the ground, $\overrightarrow{L}_g$, is |
| 49 | + |
| 50 | +$$ |
| 51 | +\begin{equation} |
| 52 | +\overrightarrow{L}_g = \epsilon_g \sigma T_g^4 + \epsilon_g L_{atm}^\downarrow |
| 53 | +\label{eqn:lg_net_nonveg} |
| 54 | +\end{equation} |
| 55 | +$$ |
| 56 | + |
| 57 | +## Governing Equations For Vegetated Surfaces |
| 58 | + |
| 59 | +The longwave radiation below the canopy, $L_v\downarrow$, is |
| 60 | + |
| 61 | +$$ |
| 62 | +\begin{equation} |
| 63 | +L_v^\downarrow = (1 - \epsilon_v)L_{atm}^\downarrow + \epsilon_v \sigma T_v^4 |
| 64 | +\end{equation} |
| 65 | +$$ |
| 66 | + |
| 67 | +where $\epsilon_v$ is the emissivity of the vegetation |
| 68 | +and $T_v$ is the temperature of the canopy. The model assumes |
| 69 | +the sunlit and shaded leaves are at the same temperature. |
| 70 | +The first term on the right-hand side of the equation represents |
| 71 | +the transmitted atmospheric longwave radiation through the |
| 72 | +canopy and the second term represents the emitted longwave |
| 73 | +radiation by the canopy. |
| 74 | + |
| 75 | +The upwelling longwave radiation from the ground is |
| 76 | + |
| 77 | +$$ |
| 78 | +\begin{eqnarray} |
| 79 | +L_g^\uparrow &=& (1 - \epsilon_g) L_v^\downarrow + \epsilon_g \sigma T_g^4 \nonumber\\[0.5em] |
| 80 | +&=& (1 - \epsilon_g)(1 - \epsilon_v)L_{atm}^\downarrow + (1 - \epsilon_g)\epsilon_v \sigma T_v^4 + \epsilon_g \sigma T_g^4 |
| 81 | +\end{eqnarray} |
| 82 | +$$ |
| 83 | + |
| 84 | +where the $T_g$ is given by equation \eqref{eqn:tg}. |
| 85 | + |
| 86 | +Lastly, the upwelling radiation from the top of the canopy to |
| 87 | +the atmosphere is |
| 88 | + |
| 89 | +$$ |
| 90 | +\begin{eqnarray} |
| 91 | +L_{vg}^\uparrow &=& (1 - \epsilon_v) L_g^\uparrow + \epsilon_v \sigma T_v^4 \nonumber \\[0.5em] |
| 92 | +&=& (1 - \epsilon_v) \left[ (1 - \epsilon_g) L_v^\downarrow + \epsilon_g \sigma T_g^4 \right] + \epsilon_v \sigma T_v^4 \nonumber \\[0.5em] |
| 93 | +&=& (1 - \epsilon_v) (1 - \epsilon_g) L_v^\downarrow |
| 94 | ++ (1 - \epsilon_v) \epsilon_g \sigma T_g^4 + \epsilon_v \sigma T_v^4 \nonumber \\[0.5em] |
| 95 | +&=& (1 - \epsilon_v) (1 - \epsilon_g) \left[ (1 - \epsilon_v)L_{atm}^\downarrow + \epsilon_v \sigma T_v^4 \right] \nonumber\\[0.5em] |
| 96 | +& & + \epsilon_v \sigma T_v^4 + (1 - \epsilon_v) \epsilon_g \sigma T_g^4 \nonumber\\[0.5em] |
| 97 | +&=& (1 - \epsilon_v) (1 - \epsilon_g) (1 - \epsilon_v)L_{atm}^\downarrow \nonumber\\[0.5em] |
| 98 | +& & +(1 - \epsilon_v) (1 - \epsilon_g) \epsilon_v \sigma T_v^4 \nonumber\\[0.5em] |
| 99 | +& & + \epsilon_v \sigma T_v^4 + (1 - \epsilon_v) \epsilon_g \sigma T_g^4 |
| 100 | +\end{eqnarray} |
| 101 | +$$ |
| 102 | + |
| 103 | +The radiation absorbed by the vegetation, $\overrightarrow{L}_{v}$, with |
| 104 | +positive value towards the atmosphere, is |
| 105 | + |
| 106 | +$$ |
| 107 | +\begin{eqnarray} |
| 108 | +\overrightarrow{L}_v & = & 2 \epsilon_v T_v^4 - \epsilon_v L_g^\uparrow - \epsilon_v L_{atm}^\downarrow \nonumber\\[0.5em] |
| 109 | +& = & 2 \epsilon_v T_v^4 - \epsilon_v \left[ (1 - \epsilon_g)(1 - \epsilon_v)L_{atm}^\downarrow + (1 - \epsilon_g)\epsilon_v \sigma T_v^4 + \epsilon_g \sigma T_g^4 \right] \nonumber\\[0.5em] |
| 110 | +& & - \epsilon_v L_{atm}^\downarrow \nonumber\\[0.5em] |
| 111 | +& = & \left[ 2 - \epsilon_v (1 - \epsilon_g)\right] \epsilon_v \sigma T_v^4 - \epsilon_v \epsilon_g \sigma T_g^4 - \epsilon_v \left[ 1 + (1 - \epsilon_g)(1 - \epsilon_v) \right] L_{atm}^\downarrow \label{eq:net_lv} |
| 112 | +\end{eqnarray} |
| 113 | +$$ |
| 114 | + |
| 115 | +The radiation absorbed by the ground with a positive value towards the atmosphere is |
| 116 | + |
| 117 | +$$ |
| 118 | +\begin{equation} |
| 119 | +\overrightarrow{L_g} = \epsilon_g \sigma T_g^4 - \epsilon_g L_{v}^\downarrow |
| 120 | +\label{eq:net_lg_veg1} |
| 121 | +\end{equation} |
| 122 | +$$ |
| 123 | + |
| 124 | +## Temporal Discretization of Ground Temperature |
| 125 | + |
| 126 | +The three components of ground temperature |
| 127 | +(i.e. $T_{sno,1}$, $T_{soi,1}$ and $T_{h2osoi}$) that contribute |
| 128 | +to the upward longwave radiation at the ground are coupled to the |
| 129 | +temperature of deeper snow and soil layers. This *coupling* of |
| 130 | +the temporally discretized equation of the surface energy |
| 131 | +balance (that includes absorbed shortwave radiation, $\overrightarrow{S}_{soi}$, |
| 132 | +absorbed longwave radiation, sensible heat flux, $H_{soi}$, |
| 133 | +latent heat flux, $\lambda E_{soi}$, and ground heat flux, $G$) |
| 134 | +with the spatio-temporally discretized equations |
| 135 | +of the vertical heat diffusion model within the snow and soil layers |
| 136 | +leads to complexity. |
| 137 | +This complexity is discussed in Section 7.3 of Bonan (2019)[@bonan2019climate] |
| 138 | +and briefly summarized below. |
| 139 | + |
| 140 | +### Non-vegetated Surface |
| 141 | + |
| 142 | +For simplicity, let's consider the non-vegetated case in which |
| 143 | +snow and standing are absent. In such a case, the ground temperature is the |
| 144 | +temperature of the first soil layer i.e. $T_g = T_{soi,1}$. |
| 145 | +At the current time step $n+1$, the absorbed |
| 146 | +longwave radiation given by equation \eqref{eqn:lg_net_nonveg} is a function |
| 147 | +of soil temperature at time $n+1$, $T_{sol,1}^{n+1}$, which is unknown. |
| 148 | +The ground heat flux at the top of the soil is given as |
| 149 | + |
| 150 | +$$ |
| 151 | +\begin{eqnarray} |
| 152 | +G_{soi} &=& \overrightarrow{S}_{soi} - \overrightarrow{L}_g - H_{soi} - \lambda E_{soi} \nonumber\\[0.5em] |
| 153 | +& = & \overrightarrow{S}_{soi} - \epsilon_{soi} \sigma T_{soi,1}^4 - \epsilon_{soi}L_{atm}^\downarrow - H_{soi} - \lambda E_{soi} |
| 154 | +\end{eqnarray} |
| 155 | +$$ |
| 156 | + |
| 157 | +The vertical heat diffusion model in ELM uses the Crank-Nicholson temporal discretization |
| 158 | +method in which the fluxes between cells are computed as an average of the flux |
| 159 | +at $n$-th and $(n+1)$-th time step. The top boundary heat flux (i.e. $G$) in |
| 160 | +ELM is computed only at $(n+1)$-th time step and is linearized as |
| 161 | + |
| 162 | +$$ |
| 163 | +\begin{eqnarray} |
| 164 | +G_{soi}^{n+1} &=& G_{soi}^{n} + \dfrac{\partial G}{\partial T_{soi,1}} |
| 165 | +\left(T_{soi,1}^{n+1} - T_{soi,1}^n\right) \nonumber \\[0.5em] |
| 166 | +& = & \overrightarrow{S}_{soi} - \left[ \epsilon_{soi} \sigma (T_{soi,1}^{n})^4 + 4 \epsilon_{soi} \sigma (T_{soi,1}^{n})^3 \Delta T_{soi}^{n+1} + \epsilon_{soi}L_{atm}^\downarrow \right] \nonumber \\[0.5em] |
| 167 | +& & - \left[ H_{soi}^n + \dfrac{\partial H}{\partial T_{soi,1}} \Delta T_{soi}^{n+1} \right] \nonumber\\[0.5em] |
| 168 | +& & - \left[ \lambda E_{soi}^n + \dfrac{\partial \lambda E}{\partial T_{soi,1}} \Delta T_{soi}^{n+1} \right] \nonumber \\[0.5em] |
| 169 | +& = & \overrightarrow{S}_{soi} - \overrightarrow{L}_g^{n+1} - H_{soi}^{n+1} - \lambda E_{soi}^{n+1} \label{eqn:G_bc_discretized} |
| 170 | +\end{eqnarray} |
| 171 | +$$ |
| 172 | + |
| 173 | +Thus, the temporally discretized net absorbed longwave radiation in Equation \eqref{eqn:G_bc_discretized} is |
| 174 | + |
| 175 | +$$ |
| 176 | +\begin{equation} |
| 177 | +\overrightarrow{L}_g^{n+1} = \left[ \epsilon_{soi} \sigma (T_{soi,1}^{n})^4 + 4 \epsilon_{soi} \sigma (T_{soi,1}^{n})^3 \Delta T_{soi}^{n+1} + \epsilon_{soi}L_{atm}^\downarrow \right] |
| 178 | +\label{eqn:lg_net_nonveg2} |
| 179 | +\end{equation} |
| 180 | +$$ |
| 181 | + |
| 182 | +Comparing Equation \eqref{eqn:lg_net_nonveg} and \eqref{eqn:lg_net_nonveg2}, one can |
| 183 | +interpret the second term on the right hand side, $4\epsilon_{soi}\sigma$ ($T_{soi}^n)^3 \Delta T^{n+1}$, |
| 184 | +as an additional source of emitted longwave radiation. However, this term can only |
| 185 | +be computed after the vertical heat diffusion model is solved, i.e, after $\Delta T_{soi}^{n+1}$ |
| 186 | +is known. Furthermore, this additional longwave radiation source term is added to |
| 187 | +the upward longwave radiation to the atmosphere given by $L_g^\uparrow$ in |
| 188 | +equation \eqref{eq:lg_up_nonveg). |
| 189 | + |
| 190 | +For the more general case, when snow and standing surface water are |
| 191 | +present on the ground, the temporally discretized net absorbed longwave radiation is |
| 192 | + |
| 193 | +$$ |
| 194 | +\begin{equation} |
| 195 | +\overrightarrow{L}_g^{n+1} = \epsilon_{g} \sigma (T_{g}^{n})^4 + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} + \epsilon_{soi}L_{atm}^\downarrow |
| 196 | +\label{eqn:lg_net_nonveg3} |
| 197 | +\end{equation} |
| 198 | +$$ |
| 199 | + |
| 200 | +### Vegetated Surface |
| 201 | + |
| 202 | +The same coupling of the surface ground energy flux equations and vertical |
| 203 | +heat diffusion model leads to a similar model complexity and the temporally |
| 204 | +discretized net longwave radiation for vegetated given by equation \eqref{eq:net_lg_veg1} |
| 205 | +is |
| 206 | + |
| 207 | +$$ |
| 208 | +\begin{equation} |
| 209 | +\overrightarrow{L_g}^{n+1} = \epsilon_g \sigma (T_g^n)^4 + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} - \epsilon_g L_{v}^\downarrow |
| 210 | +\end{equation} |
| 211 | +$$ |
| 212 | + |
| 213 | +The additional *apparent* emitted longwave radiation represented by the second term on the right |
| 214 | +hand side of the above equation is not absorbed by the canopy and directly sent upwards to |
| 215 | +the atmosphere by adding it in $L_{vg}^\uparrow$. |
| 216 | + |
| 217 | +## Temporally Discretized Governing Equations |
| 218 | + |
| 219 | +For the sake of completeness and clarity, we list below the temporally discretized |
| 220 | +longwave equations used in ELM. |
| 221 | + |
| 222 | +### Non-vegetated Surfaces |
| 223 | + |
| 224 | +The temporally discretized upwelling longwave radiation to the atmosphere and |
| 225 | +absorbed longwave radiation by the ground are |
| 226 | + |
| 227 | +$$ |
| 228 | +\begin{eqnarray} |
| 229 | +L^{\uparrow n+1}_{g} &=& (1 - \epsilon_g)L^{\downarrow n+1}_{atm} + \epsilon_g \sigma (T_{g}^{n})^4 + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} \\[0.5em] |
| 230 | +\overrightarrow{L}_g^{n+1} &=& \epsilon_g \sigma (T_g^n)^4 + \epsilon_g L_{atm}^{\downarrow n+1} + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} |
| 231 | +\end{eqnarray} |
| 232 | +$$ |
| 233 | + |
| 234 | +### Vegetated Surfaces |
| 235 | + |
| 236 | +When solving for $T_v^{n+1}$, ELM uses a diagnostic heat model in which leaves |
| 237 | +have no heat capacity and the sum of net absorbed solar and longwave radiation |
| 238 | +must balance the latent and sensible heat energy. This leads to a nonlinear |
| 239 | +equation for the vegetation canopy temperature, which is solved iteratively. |
| 240 | +When the solution for vegetation temperature has been found after $k$-th iteration, |
| 241 | +$T_v^{n+1,k}$, ELM uses a linear approximation of the non-linear term related |
| 242 | +to canopy temperature in the canopy emitted upward and downward longwave radiation |
| 243 | +equations. The linear approximation is as follows. |
| 244 | + |
| 245 | +$$ |
| 246 | +\begin{equation} |
| 247 | +\epsilon_v \sigma_v (T_v^{n+1,k+1})^4 = \epsilon_v \sigma_v (T_v^{n+1,k})^4 + 4\epsilon_v \sigma_v (T_v^{n+1,k})^3 \Delta T_v^{n+1,k} |
| 248 | +\end{equation} |
| 249 | +$$ |
| 250 | + |
| 251 | +The temporally discretized downward longwave radiation by leaves is |
| 252 | + |
| 253 | +$$ |
| 254 | +\begin{equation} |
| 255 | +L_v^{\downarrow n+1} = (1 - \epsilon_v)L_{atm}^{\downarrow n+1} + \epsilon_v \sigma (T_v^{n+1,k})^4 |
| 256 | ++ 4 \epsilon_v \sigma (T_v^{n+1,k})^3 (\Delta T_v^{n+1,k+1}) |
| 257 | +\end{equation} |
| 258 | +$$ |
| 259 | + |
| 260 | +The temporally discretized upward longwave from the canopy |
| 261 | + |
| 262 | +$$ |
| 263 | +\begin{eqnarray} |
| 264 | +L_{vg}^{\uparrow n+1} |
| 265 | +&=& (1 - \epsilon_v) (1 - \epsilon_g) (1 - \epsilon_v)L_{atm}^{\downarrow n+1} \nonumber \\[0.5em] |
| 266 | +& & + (1 - \epsilon_v) (1 - \epsilon_g) \epsilon_v \sigma (T_v^{n+1,k})^4 \nonumber\\[0.5em] |
| 267 | +& & + 4 (1 - \epsilon_v) (1 - \epsilon_g) \epsilon_v \sigma (T_v^{n+1,k})^3 (\Delta T_v^{n+1,k+1}) \nonumber\\[0.5em] |
| 268 | +& & + \epsilon_v \sigma (T_v^{n+1,k})^4 + 4 \epsilon_v \sigma (T_v^{n+1,k})^3 \Delta T_v^{n+1,k+1} \nonumber\\[0.5em] |
| 269 | +& & + (1 - \epsilon_v) \epsilon_g \sigma (T_g^n)^4 |
| 270 | +\end{eqnarray} |
| 271 | +$$ |
| 272 | + |
| 273 | +The temporally discretized upward longwave from the canopy and ground to the atmosphere is |
| 274 | + |
| 275 | +$$ |
| 276 | +\begin{equation} |
| 277 | +L^{\uparrow n + 1} = L_{vg}^{\uparrow n+1} + 4 \epsilon_g \sigma (T_g^n)^3 (\Delta T_g^{n+1}) |
| 278 | +\end{equation} |
| 279 | +$$ |
| 280 | + |
| 281 | +Note the $T_v$ used in computing the net longwave radiation absorbed by |
| 282 | +the leaf given by equation \eqref{eq:net_lv} is $T_v^{n+1,k}$ and it is not |
| 283 | +adjusted after the solution for vegetation temperature is found. |
0 commit comments