Skip to content

Commit b7e4ab9

Browse files
committed
Adds tech note about longwave radiation
1 parent 35fff3c commit b7e4ab9

File tree

4 files changed

+290
-0
lines changed

4 files changed

+290
-0
lines changed
1.46 MB
Loading

components/elm/docs/tech-guide/index.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,3 +6,4 @@
66
Shortwave radiation model
77
- [TOP Parameterization](top_solar_parameterization.md):
88
Parameterization of sub-grid topographical effects on solar radiation.
9+
- [Longwave Radiation](longwave_radiation.md): Longwave radiation model
Lines changed: 283 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,283 @@
1+
# Overview
2+
3+
The longwave radiation in ELM solves the amount of longwave
4+
radiation absorbed by the ground and the vegetation, and the
5+
amount of outgoing radiation to the atmosphere (Figure 1).
6+
The model represents the ground surface as a mixture of snow,
7+
soil, and standing surface water. The shaded and sunlit leaves
8+
are combined as a single leaf within the model. The incoming
9+
longwave atmosphere radiation, $L^\downarrow_{atm}$, is a
10+
boundary condition for the model.
11+
12+
![Image title](../figures/longwave_radiation.png)
13+
14+
Fig 1. Two-stream longwave radiation model for
15+
(a) non-vegetated and (b) vegetated surfaces.
16+
17+
## Governing Equations For Non-vegetated Surfaces
18+
19+
The emitted longwave radation from ground, $L^{\uparrow}_g$, is
20+
21+
$$
22+
\begin{equation}
23+
L^{\uparrow}_{g} = (1 - \epsilon_g)L^\downarrow_{atm} + \epsilon_g \sigma T_{g}^4
24+
\label{eq:lg_up_nonveg}
25+
\end{equation}
26+
$$
27+
28+
where $\epsilon_g$ is the emissivity of the ground,
29+
$\sigma$ is the Stefan-Boltzmann constant, and
30+
$T_g$ is the ground temperature. The first term on the
31+
right-hand side represents the reflected atmospheric longwave
32+
radiation, while the second term represents the emitted longwave
33+
radiation by the ground. The emitted longwave radiation is computed as
34+
35+
$$
36+
\begin{equation}
37+
\epsilon_g \sigma T_g^4 = \epsilon_g \sigma \left[ f_{sno} T^4_{sno} + \left( 1 - f_{sno} - f_{h2osfc}\right) T^4_{soi,1} + f_{h2osfc} T^4_{h2osfc} \right]
38+
\label{eqn:tg}
39+
\end{equation}
40+
$$
41+
42+
where $T_{sno}$, $T_{soi,1}$ and $T_{h2osfc}$
43+
the temperature of the top snow layer, the first soil layer, and
44+
the standing surface water, respectively, and
45+
$f_{sno}$ and $f_{h2osfc}$ are fraction of snow and
46+
standing surface water.
47+
48+
The radiation absorbed by the ground, $\overrightarrow{L}_g$, is
49+
50+
$$
51+
\begin{equation}
52+
\overrightarrow{L}_g = \epsilon_g \sigma T_g^4 + \epsilon_g L_{atm}^\downarrow
53+
\label{eqn:lg_net_nonveg}
54+
\end{equation}
55+
$$
56+
57+
## Governing Equations For Vegetated Surfaces
58+
59+
The longwave radiation below the canopy, $L_v\downarrow$, is
60+
61+
$$
62+
\begin{equation}
63+
L_v^\downarrow = (1 - \epsilon_v)L_{atm}^\downarrow + \epsilon_v \sigma T_v^4
64+
\end{equation}
65+
$$
66+
67+
where $\epsilon_v$ is the emissivity of the vegetation
68+
and $T_v$ is the temperature of the canopy. The model assumes
69+
the sunlit and shaded leaves are at the same temperature.
70+
The first term on the right-hand side of the equation represents
71+
the transmitted atmospheric longwave radiation through the
72+
canopy and the second term represents the emitted longwave
73+
radiation by the canopy.
74+
75+
The upwelling longwave radiation from the ground is
76+
77+
$$
78+
\begin{eqnarray}
79+
L_g^\uparrow &=& (1 - \epsilon_g) L_v^\downarrow + \epsilon_g \sigma T_g^4 \nonumber\\[0.5em]
80+
&=& (1 - \epsilon_g)(1 - \epsilon_v)L_{atm}^\downarrow + (1 - \epsilon_g)\epsilon_v \sigma T_v^4 + \epsilon_g \sigma T_g^4
81+
\end{eqnarray}
82+
$$
83+
84+
where the $T_g$ is given by equation \eqref{eqn:tg}.
85+
86+
Lastly, the upwelling radiation from the top of the canopy to
87+
the atmosphere is
88+
89+
$$
90+
\begin{eqnarray}
91+
L_{vg}^\uparrow &=& (1 - \epsilon_v) L_g^\uparrow + \epsilon_v \sigma T_v^4 \nonumber \\[0.5em]
92+
&=& (1 - \epsilon_v) \left[ (1 - \epsilon_g) L_v^\downarrow + \epsilon_g \sigma T_g^4 \right] + \epsilon_v \sigma T_v^4 \nonumber \\[0.5em]
93+
&=& (1 - \epsilon_v) (1 - \epsilon_g) L_v^\downarrow
94+
+ (1 - \epsilon_v) \epsilon_g \sigma T_g^4 + \epsilon_v \sigma T_v^4 \nonumber \\[0.5em]
95+
&=& (1 - \epsilon_v) (1 - \epsilon_g) \left[ (1 - \epsilon_v)L_{atm}^\downarrow + \epsilon_v \sigma T_v^4 \right] \nonumber\\[0.5em]
96+
& & + \epsilon_v \sigma T_v^4 + (1 - \epsilon_v) \epsilon_g \sigma T_g^4 \nonumber\\[0.5em]
97+
&=& (1 - \epsilon_v) (1 - \epsilon_g) (1 - \epsilon_v)L_{atm}^\downarrow \nonumber\\[0.5em]
98+
& & +(1 - \epsilon_v) (1 - \epsilon_g) \epsilon_v \sigma T_v^4 \nonumber\\[0.5em]
99+
& & + \epsilon_v \sigma T_v^4 + (1 - \epsilon_v) \epsilon_g \sigma T_g^4
100+
\end{eqnarray}
101+
$$
102+
103+
The radiation absorbed by the vegetation, $\overrightarrow{L}_{v}$, with
104+
positive value towards the atmosphere, is
105+
106+
$$
107+
\begin{eqnarray}
108+
\overrightarrow{L}_v & = & 2 \epsilon_v T_v^4 - \epsilon_v L_g^\uparrow - \epsilon_v L_{atm}^\downarrow \nonumber\\[0.5em]
109+
& = & 2 \epsilon_v T_v^4 - \epsilon_v \left[ (1 - \epsilon_g)(1 - \epsilon_v)L_{atm}^\downarrow + (1 - \epsilon_g)\epsilon_v \sigma T_v^4 + \epsilon_g \sigma T_g^4 \right] \nonumber\\[0.5em]
110+
& & - \epsilon_v L_{atm}^\downarrow \nonumber\\[0.5em]
111+
& = & \left[ 2 - \epsilon_v (1 - \epsilon_g)\right] \epsilon_v \sigma T_v^4 - \epsilon_v \epsilon_g \sigma T_g^4 - \epsilon_v \left[ 1 + (1 - \epsilon_g)(1 - \epsilon_v) \right] L_{atm}^\downarrow \label{eq:net_lv}
112+
\end{eqnarray}
113+
$$
114+
115+
The radiation absorbed by the ground with a positive value towards the atmosphere is
116+
117+
$$
118+
\begin{equation}
119+
\overrightarrow{L_g} = \epsilon_g \sigma T_g^4 - \epsilon_g L_{v}^\downarrow
120+
\label{eq:net_lg_veg1}
121+
\end{equation}
122+
$$
123+
124+
## Temporal Discretization of Ground Temperature
125+
126+
The three components of ground temperature
127+
(i.e. $T_{sno,1}$, $T_{soi,1}$ and $T_{h2osoi}$) that contribute
128+
to the upward longwave radiation at the ground are coupled to the
129+
temperature of deeper snow and soil layers. This *coupling* of
130+
the temporally discretized equation of the surface energy
131+
balance (that includes absorbed shortwave radiation, $\overrightarrow{S}_{soi}$,
132+
absorbed longwave radiation, sensible heat flux, $H_{soi}$,
133+
latent heat flux, $\lambda E_{soi}$, and ground heat flux, $G$)
134+
with the spatio-temporally discretized equations
135+
of the vertical heat diffusion model within the snow and soil layers
136+
leads to complexity.
137+
This complexity is discussed in Section 7.3 of Bonan (2019)[@bonan2019climate]
138+
and briefly summarized below.
139+
140+
### Non-vegetated Surface
141+
142+
For simplicity, let's consider the non-vegetated case in which
143+
snow and standing are absent. In such a case, the ground temperature is the
144+
temperature of the first soil layer i.e. $T_g = T_{soi,1}$.
145+
At the current time step $n+1$, the absorbed
146+
longwave radiation given by equation \eqref{eqn:lg_net_nonveg} is a function
147+
of soil temperature at time $n+1$, $T_{sol,1}^{n+1}$, which is unknown.
148+
The ground heat flux at the top of the soil is given as
149+
150+
$$
151+
\begin{eqnarray}
152+
G_{soi} &=& \overrightarrow{S}_{soi} - \overrightarrow{L}_g - H_{soi} - \lambda E_{soi} \nonumber\\[0.5em]
153+
& = & \overrightarrow{S}_{soi} - \epsilon_{soi} \sigma T_{soi,1}^4 - \epsilon_{soi}L_{atm}^\downarrow - H_{soi} - \lambda E_{soi}
154+
\end{eqnarray}
155+
$$
156+
157+
The vertical heat diffusion model in ELM uses the Crank-Nicholson temporal discretization
158+
method in which the fluxes between cells are computed as an average of the flux
159+
at $n$-th and $(n+1)$-th time step. The top boundary heat flux (i.e. $G$) in
160+
ELM is computed only at $(n+1)$-th time step and is linearized as
161+
162+
$$
163+
\begin{eqnarray}
164+
G_{soi}^{n+1} &=& G_{soi}^{n} + \dfrac{\partial G}{\partial T_{soi,1}}
165+
\left(T_{soi,1}^{n+1} - T_{soi,1}^n\right) \nonumber \\[0.5em]
166+
& = & \overrightarrow{S}_{soi} - \left[ \epsilon_{soi} \sigma (T_{soi,1}^{n})^4 + 4 \epsilon_{soi} \sigma (T_{soi,1}^{n})^3 \Delta T_{soi}^{n+1} + \epsilon_{soi}L_{atm}^\downarrow \right] \nonumber \\[0.5em]
167+
& & - \left[ H_{soi}^n + \dfrac{\partial H}{\partial T_{soi,1}} \Delta T_{soi}^{n+1} \right] \nonumber\\[0.5em]
168+
& & - \left[ \lambda E_{soi}^n + \dfrac{\partial \lambda E}{\partial T_{soi,1}} \Delta T_{soi}^{n+1} \right] \nonumber \\[0.5em]
169+
& = & \overrightarrow{S}_{soi} - \overrightarrow{L}_g^{n+1} - H_{soi}^{n+1} - \lambda E_{soi}^{n+1} \label{eqn:G_bc_discretized}
170+
\end{eqnarray}
171+
$$
172+
173+
Thus, the temporally discretized net absorbed longwave radiation in Equation \eqref{eqn:G_bc_discretized} is
174+
175+
$$
176+
\begin{equation}
177+
\overrightarrow{L}_g^{n+1} = \left[ \epsilon_{soi} \sigma (T_{soi,1}^{n})^4 + 4 \epsilon_{soi} \sigma (T_{soi,1}^{n})^3 \Delta T_{soi}^{n+1} + \epsilon_{soi}L_{atm}^\downarrow \right]
178+
\label{eqn:lg_net_nonveg2}
179+
\end{equation}
180+
$$
181+
182+
Comparing Equation \eqref{eqn:lg_net_nonveg} and \eqref{eqn:lg_net_nonveg2}, one can
183+
interpret the second term on the right hand side, $4\epsilon_{soi}\sigma$ ($T_{soi}^n)^3 \Delta T^{n+1}$,
184+
as an additional source of emitted longwave radiation. However, this term can only
185+
be computed after the vertical heat diffusion model is solved, i.e, after $\Delta T_{soi}^{n+1}$
186+
is known. Furthermore, this additional longwave radiation source term is added to
187+
the upward longwave radiation to the atmosphere given by $L_g^\uparrow$ in
188+
equation \eqref{eq:lg_up_nonveg).
189+
190+
For the more general case, when snow and standing surface water are
191+
present on the ground, the temporally discretized net absorbed longwave radiation is
192+
193+
$$
194+
\begin{equation}
195+
\overrightarrow{L}_g^{n+1} = \epsilon_{g} \sigma (T_{g}^{n})^4 + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} + \epsilon_{soi}L_{atm}^\downarrow
196+
\label{eqn:lg_net_nonveg3}
197+
\end{equation}
198+
$$
199+
200+
### Vegetated Surface
201+
202+
The same coupling of the surface ground energy flux equations and vertical
203+
heat diffusion model leads to a similar model complexity and the temporally
204+
discretized net longwave radiation for vegetated given by equation \eqref{eq:net_lg_veg1}
205+
is
206+
207+
$$
208+
\begin{equation}
209+
\overrightarrow{L_g}^{n+1} = \epsilon_g \sigma (T_g^n)^4 + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} - \epsilon_g L_{v}^\downarrow
210+
\end{equation}
211+
$$
212+
213+
The additional *apparent* emitted longwave radiation represented by the second term on the right
214+
hand side of the above equation is not absorbed by the canopy and directly sent upwards to
215+
the atmosphere by adding it in $L_{vg}^\uparrow$.
216+
217+
## Temporally Discretized Governing Equations
218+
219+
For the sake of completeness and clarity, we list below the temporally discretized
220+
longwave equations used in ELM.
221+
222+
### Non-vegetated Surfaces
223+
224+
The temporally discretized upwelling longwave radiation to the atmosphere and
225+
absorbed longwave radiation by the ground are
226+
227+
$$
228+
\begin{eqnarray}
229+
L^{\uparrow n+1}_{g} &=& (1 - \epsilon_g)L^{\downarrow n+1}_{atm} + \epsilon_g \sigma (T_{g}^{n})^4 + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1} \\[0.5em]
230+
\overrightarrow{L}_g^{n+1} &=& \epsilon_g \sigma (T_g^n)^4 + \epsilon_g L_{atm}^{\downarrow n+1} + 4 \epsilon_{g} \sigma (T_{g}^{n})^3 \Delta T_{g}^{n+1}
231+
\end{eqnarray}
232+
$$
233+
234+
### Vegetated Surfaces
235+
236+
When solving for $T_v^{n+1}$, ELM uses a diagnostic heat model in which leaves
237+
have no heat capacity and the sum of net absorbed solar and longwave radiation
238+
must balance the latent and sensible heat energy. This leads to a nonlinear
239+
equation for the vegetation canopy temperature, which is solved iteratively.
240+
When the solution for vegetation temperature has been found after $k$-th iteration,
241+
$T_v^{n+1,k}$, ELM uses a linear approximation of the non-linear term related
242+
to canopy temperature in the canopy emitted upward and downward longwave radiation
243+
equations. The linear approximation is as follows.
244+
245+
$$
246+
\begin{equation}
247+
\epsilon_v \sigma_v (T_v^{n+1,k+1})^4 = \epsilon_v \sigma_v (T_v^{n+1,k})^4 + 4\epsilon_v \sigma_v (T_v^{n+1,k})^3 \Delta T_v^{n+1,k}
248+
\end{equation}
249+
$$
250+
251+
The temporally discretized downward longwave radiation by leaves is
252+
253+
$$
254+
\begin{equation}
255+
L_v^{\downarrow n+1} = (1 - \epsilon_v)L_{atm}^{\downarrow n+1} + \epsilon_v \sigma (T_v^{n+1,k})^4
256+
+ 4 \epsilon_v \sigma (T_v^{n+1,k})^3 (\Delta T_v^{n+1,k+1})
257+
\end{equation}
258+
$$
259+
260+
The temporally discretized upward longwave from the canopy
261+
262+
$$
263+
\begin{eqnarray}
264+
L_{vg}^{\uparrow n+1}
265+
&=& (1 - \epsilon_v) (1 - \epsilon_g) (1 - \epsilon_v)L_{atm}^{\downarrow n+1} \nonumber \\[0.5em]
266+
& & + (1 - \epsilon_v) (1 - \epsilon_g) \epsilon_v \sigma (T_v^{n+1,k})^4 \nonumber\\[0.5em]
267+
& & + 4 (1 - \epsilon_v) (1 - \epsilon_g) \epsilon_v \sigma (T_v^{n+1,k})^3 (\Delta T_v^{n+1,k+1}) \nonumber\\[0.5em]
268+
& & + \epsilon_v \sigma (T_v^{n+1,k})^4 + 4 \epsilon_v \sigma (T_v^{n+1,k})^3 \Delta T_v^{n+1,k+1} \nonumber\\[0.5em]
269+
& & + (1 - \epsilon_v) \epsilon_g \sigma (T_g^n)^4
270+
\end{eqnarray}
271+
$$
272+
273+
The temporally discretized upward longwave from the canopy and ground to the atmosphere is
274+
275+
$$
276+
\begin{equation}
277+
L^{\uparrow n + 1} = L_{vg}^{\uparrow n+1} + 4 \epsilon_g \sigma (T_g^n)^3 (\Delta T_g^{n+1})
278+
\end{equation}
279+
$$
280+
281+
Note the $T_v$ used in computing the net longwave radiation absorbed by
282+
the leaf given by equation \eqref{eq:net_lv} is $T_v^{n+1,k}$ and it is not
283+
adjusted after the solution for vegetation temperature is found.

docs/refs/elm.bib

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -117,3 +117,9 @@ @book{goudriaan1977crop
117117
publisher={Wageningen University and Research}
118118
}
119119

120+
@book{bonan2019climate,
121+
title={Climate change and terrestrial ecosystem modeling},
122+
author={Bonan, Gordon},
123+
year={2019},
124+
publisher={Cambridge University Press}
125+
}

0 commit comments

Comments
 (0)