@@ -599,6 +599,15 @@ pure elemental function t_of_theta_rhod_qv(theta, rhod, qv) result(t)
599
599
! described herein:
600
600
! The paragraph below equation 2.7 in doi:10.5065/1DFH-6P97.
601
601
! The paragraph below equation 2 in doi:10.1175/MWR-D-11-00215.1.
602
+ !
603
+ ! In short, solve the below equation set for $T$ in terms of $\theta$, $\rho_d$ and $q_v$:
604
+ ! \begin{equation*}
605
+ ! \begin{cases}
606
+ ! \theta &= T (\frac{P_0}{P})^{\frac{R_d}{C_p}} \\
607
+ ! P &= \rho_d R_d T_m \\
608
+ ! T_m &= T (1 + \frac{R_v}{R_d} q_v)
609
+ ! \end{cases}
610
+ ! \end{equation*}
602
611
t = (theta ** (constant_cpd / constant_cvd)) * &
603
612
(((rhod * constant_rd * (1.0_kind_r8 + constant_rv / constant_rd * qv)) / constant_p0) ** &
604
613
(constant_rd / constant_cvd))
@@ -624,6 +633,15 @@ pure elemental function theta_of_t_rhod_qv(t, rhod, qv) result(theta)
624
633
! described herein:
625
634
! The paragraph below equation 2.7 in doi:10.5065/1DFH-6P97.
626
635
! The paragraph below equation 2 in doi:10.1175/MWR-D-11-00215.1.
636
+ !
637
+ ! In short, solve the below equation set for $\theta$ in terms of $T$, $\rho_d$ and $q_v$:
638
+ ! \begin{equation*}
639
+ ! \begin{cases}
640
+ ! \theta &= T (\frac{P_0}{P})^{\frac{R_d}{C_p}} \\
641
+ ! P &= \rho_d R_d T_m \\
642
+ ! T_m &= T (1 + \frac{R_v}{R_d} q_v)
643
+ ! \end{cases}
644
+ ! \end{equation*}
627
645
theta = (t ** (constant_cvd / constant_cpd)) * &
628
646
((constant_p0 / (rhod * constant_rd * (1.0_kind_r8 + constant_rv / constant_rd * qv))) ** &
629
647
(constant_rd / constant_cpd))
0 commit comments