-
Notifications
You must be signed in to change notification settings - Fork 234
Open
Description
Steps to reproduce
start = pd.Timestamp("2024-12-12", tz="Europe/Oslo")
end = pd.Timestamp("2024-12-13", tz="Europe/Oslo")
df = client.query_contracted_reserve_prices_procured_capacity(
country_code=Area.NO_2,
process_type="A47", # mFRR
type_marketagreement_type="A01", # Daily
start=start,
end=end,
)
print(df)
Expected
Dataframe with procured capacity prices and volumes
Actual
Dataframe with procured capacity volumes prices but prices volumes are missing
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 24 entries, 2024-12-12 00:00:00+01:00 to 2024-12-12 23:00:00+01:00
Freq: h
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 (Procured capacity, Down) 24 non-null float64
1 (Procured capacity, Up) 24 non-null float64
dtypes: float64(2)
memory usage: 576.0 bytes
Procured capacity
Down Up
2024-12-12 00:00:00+01:00 3.0 22.00
2024-12-12 01:00:00+01:00 5.5 13.00
2024-12-12 02:00:00+01:00 5.5 6.00
2024-12-12 03:00:00+01:00 5.5 13.00
...
The raw xml response contains both prices (procurement_Price.amount) and volumes (quantity), e.g:
<Point>
<position>1</position>
<quantity>180</quantity>
<procurement_Price.amount>3.00</procurement_Price.amount>
<imbalance_Price.category>A07</imbalance_Price.category>
</Point>
Metadata
Metadata
Assignees
Labels
No labels