@@ -119,7 +119,6 @@ Train the machine using `fit!(mach)`.
119
119
```julia
120
120
using MLJ
121
121
using CategoricalArrays
122
- import Pkg; Pkg.add("MLJLIBSVMInterface") # For SVC
123
122
124
123
# Setup some data
125
124
N = 200
@@ -142,7 +141,6 @@ NeuralNetworkClassifier = @load NeuralNetworkClassifier pkg=MLJFlux
142
141
SVC = @load SVC pkg=LIBSVM
143
142
144
143
145
-
146
144
emb = EntityEmbedder(NeuralNetworkClassifier(embedding_dims=Dict(:Column2 => 2, :Column3 => 2)))
147
145
clf = SVC(cost = 1.0)
148
146
@@ -174,15 +172,15 @@ yhat = predict(mach, X)
174
172
machy = machine(emb, X, y)
175
173
fit!(machy)
176
174
julia> Xnew = transform(machy, X)
177
- (Column1 = Float32[1.0, 2.0, 3.0, 4.0, 5.0, 1.0, … ],
178
- Column2_1 = Float32[1.285769 , 0.08033762 , -0.09961729 , -0.2812789 , 0.94185555 , 1.285769 , … ],
179
- Column2_2 = Float32[-0.8712612 , -0.34193662 , -0.8327084 , 1.6905315 , 0.75170106 , -0.8712612 , …],
180
- Column3_1 = Float32[-0.00044717162 , 1.5679433 , -0.48835647 , -0.9364795 , -0.9364795 , -0.00044717162 , …],
181
- Column3_2 = Float32[-1.086054 , 1.1133554 , -1.5444189 , 0.2760421 , 0.2760421 , -1.086054 , … ],
175
+ (Column1 = Float32[1.0, 2.0, 3.0, … ],
176
+ Column2_1 = Float32[1.2 , 0.08 , -0.09 , -0.2 , 0.94 , 1.2 , … ],
177
+ Column2_2 = Float32[-0.87 , -0.34 , -0.8 , 1.6 , 0.75 , -0.87 , …],
178
+ Column3_1 = Float32[-0.0 , 1.56 , -0.48 , -0.9 , -0.9 , -0.0 , …],
179
+ Column3_2 = Float32[-1.0 , 1.1 , -1.54 , 0.2 , 0.2 , -1.0 , … ],
182
180
Column4 = Float32[1.0, 2.0, 3.0, 4.0, 5.0, 1.0, … ],
183
- Column5 = Float32[0.27364022 , 0.12229505 , -0.60269946 , 1.5815768 , -0.6342952 , -0.12323896 , … ],
184
- Column6_1 = Float32[-0.99640805 , -0.99640805 , 0.8055623 , 0.8055623 , 0.34632754 , -0.99640805 , … ],
185
- Column6_2 = Float32[-1.0043539 , -1.0043539 , 0.19345926 , 0.19345926 , 1.7287723 , -1.0043539 , … ])
181
+ Column5 = Float32[0.27 , 0.12 , -0.60 , 1.5 , -0.6 , -0.123 , … ],
182
+ Column6_1 = Float32[-0.99 , -0.99 , 0.8 , 0.8 , 0.34 , -0.99 , … ],
183
+ Column6_2 = Float32[-1.00 , -1.0 , 0.19 , 0.19 , 1.7 , -1.00 , … ])
186
184
```
187
185
188
186
See also
0 commit comments