Skip to content

Added support for AWQ models #11

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: v0.2
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions examples/batch_generation.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import sys
sys.path.append("..")
from models.llama import LLM
from models.llama import LLM, LLMAwq
import argparse
import torch
from transformers import AutoTokenizer
Expand All @@ -14,6 +14,7 @@
parser.add_argument('--G', type=int, default=32, help='generation length')
parser.add_argument('--K', type=int, default=10, help='K')
parser.add_argument('--L', type=int, default=150, help='K')
parser.add_argument('--awq', action='store_true', help='use LLMAwq')
args = parser.parse_args()
print(args)
MAX_LEN = args.M
Expand All @@ -32,7 +33,13 @@
data = item
break

llm = LLM(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=BATCH_SIZE, device=DEVICE, dtype=DTYPE)
if args.awq:
print("Using LLMAwq for AWQ optimization.")
llm = LLMAwq(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=BATCH_SIZE, device=DEVICE, dtype=DTYPE)
else:
print("Using standard LLM.")
llm = LLM(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=BATCH_SIZE, device=DEVICE, dtype=DTYPE)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
text = data["input"]
input_ids = tokenizer.encode(text=text, return_tensors="pt").to(device=DEVICE)
Expand Down
11 changes: 9 additions & 2 deletions examples/bench.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import sys
sys.path.append("..")
from models.llama import LLM
from models.llama import LLM, LLMAwq
import argparse
import torch
from transformers import AutoTokenizer
Expand All @@ -15,6 +15,7 @@
parser.add_argument('--G', type=int, default=128, help='generation length')
parser.add_argument('--K', type=int, default=10, help='K')
parser.add_argument('--L', type=int, default=150, help='L')
parser.add_argument('--awq', action='store_true', help='use LLMAwq')
args = parser.parse_args()
print(args)
MAX_LEN = args.M
Expand All @@ -33,7 +34,13 @@
data = item
break

llm = LLM(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=B, device=DEVICE, dtype=DTYPE)
if args.awq:
print("Using LLMAwq for AWQ optimization.")
llm = LLMAwq(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=B, device=DEVICE, dtype=DTYPE)
else:
print("Using standard LLM.")
llm = LLM(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=B, device=DEVICE, dtype=DTYPE)

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
text = data["input"]
input_ids = tokenizer.encode(text=text, return_tensors="pt").to(device=DEVICE)
Expand Down
10 changes: 8 additions & 2 deletions examples/generation.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import sys
sys.path.append("..")
from models.llama import LLM
from models.llama import LLM, LLMAwq
import argparse
import torch
from transformers import AutoTokenizer
Expand All @@ -16,6 +16,7 @@
parser.add_argument('--L', type=int, default=150, help='K')
parser.add_argument('--data', type=str, default="../data/story.txt", help='source data file')
parser.add_argument('--template', type=str, default="meta-llama3", help='chat template')
parser.add_argument('--awq', action='store_true', help='use LLMAwq')
args = parser.parse_args()
print(args)
MAX_LEN = args.M
Expand All @@ -25,7 +26,12 @@
DTYPE = torch.bfloat16
DEVICE = "cuda:0"
chat_template = Templates[args.template]
llm = LLM(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=1, device=DEVICE, dtype=DTYPE, generation_buffer=args.G + 32)
if args.awq:
print("Using LLMAwq for AWQ optimization.")
llm = LLMAwq(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=1, device=DEVICE, dtype=DTYPE, generation_buffer=args.G + 32)
else:
print("Using standard LLM.")
llm = LLM(K=args.K, L=args.L, max_length=MAX_LEN, model_name=args.model, batch_size=1, device=DEVICE, dtype=DTYPE, generation_buffer=args.G + 32)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
with open(args.data, "r", encoding="utf-8") as file:
content = file.read()
Expand Down
Empty file modified install.sh
100644 → 100755
Empty file.
Loading