This repository was archived by the owner on Dec 16, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain_bayesian_imagenet_avu.py
842 lines (730 loc) · 31.5 KB
/
main_bayesian_imagenet_avu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
from torch.nn import functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import models.bayesian.resnet_large as resnet
import models.deterministic.resnet_large as det_resnet
from src import util
#from utils import calib
import csv
import numpy as np
from src.util import get_rho
from src.avuc_loss import AvULoss
from torch.utils.tensorboard import SummaryWriter
torchvision.set_image_backend('accimage')
model_names = sorted(
name for name in resnet.__dict__
if name.islower() and not name.startswith("__")
and name.startswith("resnet") and callable(resnet.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data',
metavar='DIR',
default='data/imagenet',
help='path to dataset')
parser.add_argument('--corrupt_data',
type=str,
default='data/ImageNet-C',
metavar='N',
help='path to corrupt dataset')
parser.add_argument('-a',
'--arch',
metavar='ARCH',
default='resnet50',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j',
'--workers',
default=8,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs',
default=90,
type=int,
metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch',
default=0,
type=int,
metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--val_batch_size', default=1000, type=int)
parser.add_argument('-b',
'--batch-size',
default=32,
type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr',
'--learning-rate',
default=0.001,
type=float,
metavar='LR',
help='initial learning rate',
dest='lr')
parser.add_argument('--momentum',
default=0.9,
type=float,
metavar='M',
help='momentum')
parser.add_argument('--wd',
'--weight-decay',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p',
'--print-freq',
default=10,
type=int,
metavar='N',
help='print frequency (default: 10)')
parser.add_argument('--resume',
default='',
type=str,
metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e',
'--evaluate',
dest='evaluate',
action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained',
dest='pretrained',
action='store_true',
default=True,
help='use pre-trained model')
parser.add_argument('--world-size',
default=-1,
type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank',
default=-1,
type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url',
default='tcp://224.66.41.62:23456',
type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend',
default='nccl',
type=str,
help='distributed backend')
parser.add_argument('--seed',
default=None,
type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed',
action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--mode', type=str, required=True, help='train | test')
parser.add_argument('--save-dir',
dest='save_dir',
help='The directory used to save the trained models',
default='./checkpoint/imagenet/bayesian_svi_avu',
type=str)
parser.add_argument(
'--tensorboard',
type=bool,
default=True,
metavar='N',
help='use tensorboard for logging and visualization of training progress')
parser.add_argument(
'--log_dir',
type=str,
default='./logs/imagenet/bayesian_svi_avu',
metavar='N',
help='use tensorboard for logging and visualization of training progress')
parser.add_argument('--num_monte_carlo',
type=int,
default=20,
metavar='N',
help='number of Monte Carlo samples')
parser.add_argument(
'--moped',
type=bool,
default=True,
help='set prior and initialize approx posterior with Empirical Bayes')
parser.add_argument('--delta',
type=float,
default=0.5,
help='delta value for variance scaling in MOPED')
best_acc1 = 0
opt_th = 1.0
len_trainset = 1281167
beta = 3.0
def MOPED_layer(layer, det_layer, delta):
"""
Set the priors and initialize surrogate posteriors of Bayesian NN with Empirical Bayes
MOPED (Model Priors with Empirical Bayes using Deterministic DNN)
Ref: https://arxiv.org/abs/1906.05323
'Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes'. AAAI 2020.
"""
if (str(layer) == 'Conv2dVariational()'):
#set the priors
print(str(layer))
layer.prior_weight_mu = det_layer.weight.data
if layer.prior_bias_mu is not None:
layer.prior_bias_mu = det_layer.bias.data
#initialize surrogate posteriors
layer.mu_kernel.data = det_layer.weight.data
if layer.mu_bias is not None:
layer.mu_bias.data = det_layer.bias.data
elif (isinstance(layer, nn.Conv2d)):
print(str(layer))
layer.weight.data = det_layer.weight.data
if layer.bias is not None:
layer.bias.data = det_layer.bias.data2
elif (str(layer) == 'LinearVariational()'):
print(str(layer))
layer.prior_weight_mu = det_layer.weight.data
if layer.prior_bias_mu is not None:
layer.prior_bias_mu = det_layer.bias.data
#initialize the surrogate posteriors
layer.mu_weight.data = det_layer.weight.data
layer.rho_weight.data = get_rho(det_layer.weight.data, delta)
if layer.mu_bias is not None:
layer.mu_bias.data = det_layer.bias.data
layer.rho_bias.data = get_rho(det_layer.bias.data, delta)
elif str(layer).startswith('Batch'):
#initialize parameters
print(str(layer))
layer.weight.data = det_layer.weight.data
if layer.bias is not None:
layer.bias.data = det_layer.bias.data
layer.running_mean.data = det_layer.running_mean.data
layer.running_var.data = det_layer.running_var.data
layer.num_batches_tracked.data = det_layer.num_batches_tracked.data
corruptions = [
'brightness', 'contrast', 'defocus_blur', 'elastic_transform', 'fog',
'frost', 'gaussian_blur', 'gaussian_noise', 'glass_blur', 'impulse_noise',
'pixelate', 'saturate', 'shot_noise', 'spatter', 'speckle_noise',
'zoom_blur'
]
def get_corrupt_dataloader(args, corrupt_type, level):
corrupt_dir = os.path.join(args.corrupt_data, str(corrupt_type),
str(level))
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
corrupt_dataset = datasets.ImageFolder(
corrupt_dir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
corrupt_val_loader = torch.utils.data.DataLoader(
corrupt_dataset,
batch_size=args.val_batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
return corrupt_val_loader
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
if torch.cuda.is_available():
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker,
nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
model = torch.nn.DataParallel(resnet.__dict__[args.arch]())
if torch.cuda.is_available():
model.cuda()
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
avu_criterion = AvULoss().cuda()
else:
model.cpu()
criterion = nn.CrossEntropyLoss().cpu()
avu_criterion = AvULoss().cpu()
optimizer = torch.optim.SGD(model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
tb_writer = None
if args.tensorboard:
logger_dir = os.path.join(args.log_dir, 'tb_logger')
if not os.path.exists(logger_dir):
os.makedirs(logger_dir)
tb_writer = SummaryWriter(logger_dir)
preds_dir = os.path.join(args.log_dir, 'preds')
if not os.path.exists(preds_dir):
os.makedirs(preds_dir)
results_dir = os.path.join(args.log_dir, 'results')
if not os.path.exists(results_dir):
os.makedirs(results_dir)
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
print('len trainset: ', len(train_dataset))
print('len valset: ', len(val_dataset))
len_trainset = len(train_dataset)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
drop_last=True)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.val_batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
if args.mode == 'train':
if (args.moped):
print("MOPED enabled")
det_model = torch.nn.DataParallel(
det_resnet.__dict__[args.arch](pretrained=True))
if torch.cuda.is_available():
det_model.cuda()
else:
det_model.cpu()
for (idx_1, layer_1), (det_idx_1, det_layer_1) in zip(
enumerate(model.children()),
enumerate(det_model.children())):
MOPED_layer(layer_1, det_layer_1, args.delta)
for (idx_2, layer_2), (det_idx_2, det_layer_2) in zip(
enumerate(layer_1.children()),
enumerate(det_layer_1.children())):
MOPED_layer(layer_2, det_layer_2, args.delta)
for (idx_3, layer_3), (det_idx_3, det_layer_3) in zip(
enumerate(layer_2.children()),
enumerate(det_layer_2.children())):
MOPED_layer(layer_3, det_layer_3, args.delta)
for (idx_4, layer_4), (det_idx_4, det_layer_4) in zip(
enumerate(layer_3.children()),
enumerate(det_layer_3.children())):
MOPED_layer(layer_4, det_layer_4, args.delta)
for (idx_5,
layer_5), (det_idx_5, det_layer_5) in zip(
enumerate(layer_4.children()),
enumerate(det_layer_4.children())):
MOPED_layer(layer_5, det_layer_5, args.delta)
for (idx_6,
layer_6), (det_idx_6, det_layer_6) in zip(
enumerate(layer_5.children()),
enumerate(det_layer_5.children())):
MOPED_layer(layer_6, det_layer_6,
args.delta)
model.state_dict()
del det_model
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, avu_criterion, optimizer,
epoch, args, tb_writer)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, avu_criterion, epoch,
args, tb_writer)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if is_best:
save_checkpoint(
{
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
},
is_best,
filename=os.path.join(
args.save_dir,
'bayesian_{}_imagenet.pth'.format(args.arch)))
elif args.mode == 'test':
checkpoint_file = args.save_dir + '/bayesian_{}_imagenet.pth'.format(
args.arch)
if torch.cuda.is_available():
checkpoint = torch.load(checkpoint_file)
else:
checkpoint = torch.load(checkpoint_file, map_location=torch.device('cpu'))
print('load checkpoint.')
model.load_state_dict(checkpoint['state_dict'])
#header = ['corrupt', 'test_acc', 'brier', 'ece']
header = ['corrupt', 'test_acc']
#Evaluate on test dataset
#test_acc, brier, ece = evaluate(model, val_loader, args, corrupt=None, level=None)
test_acc = evaluate(model, val_loader, args, corrupt=None, level=None)
print('******Test data***********\n')
#print('test_acc: ', test_acc, ' | Brier: ', brier, ' | ECE: ', ece, '\n')
print('test_acc: ', test_acc)
'''
t_file = args.log_dir + '/results/test_results.csv'
with open(t_file, 'wt') as t_file:
writer = csv.writer(t_file, delimiter=',', lineterminator='\n')
writer.writerow([j for j in header])
writer.writerow(['test', test_acc, brier, ece])
t_file.close()
'''
for level in range(1, 6):
print('******Corruption Level: ', level, ' ***********\n')
results_file = args.log_dir + '/results/level' + str(
level) + '.csv'
with open(results_file, 'wt') as results_file:
writer = csv.writer(results_file,
delimiter=',',
lineterminator='\n')
writer.writerow([j for j in header])
for c in corruptions:
val_loader = get_corrupt_dataloader(args, c, level)
test_acc = evaluate(model,
val_loader,
args,
corrupt=c,
level=level)
print('############ Corruption type: ', c,
' ################')
print('test_acc: ', test_acc, '\n')
writer.writerow([c, test_acc])
results_file.close()
def train(train_loader, model, criterion, avu_criterion, optimizer, epoch,
args, tb_writer):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
global opt_th
progress = ProgressMeter(len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if torch.cuda.is_available():
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
else:
images = images.cpu(non_blocking=True)
target = target.cpu(non_blocking=True)
# compute output
output, kl = model(images)
probs_ = torch.nn.functional.softmax(output, dim=1)
probs = probs_.data.cpu().numpy()
pred_entropy = util.entropy(probs)
preds = np.argmax(probs, axis=-1)
AvU = util.accuracy_vs_uncertainty(np.array(preds),
np.array(target.cpu().data.numpy()),
np.array(pred_entropy), opt_th)
preds_list.append(preds)
labels_list.append(target.cpu().data.numpy())
unc_list.append(pred_entropy)
cross_entropy_loss = criterion(output, target)
scaled_kl = (kl.data[0] / len_trainset)
elbo_loss = cross_entropy_loss + scaled_kl
avu_loss = beta * avu_criterion(output, target, opt_th, type=0)
loss = cross_entropy_loss + scaled_kl + avu_loss
output = output.float()
loss = loss.float()
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.mean().backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if tb_writer is not None:
tb_writer.add_scalar('train/cross_entropy_loss',
cross_entropy_loss.item(), epoch)
tb_writer.add_scalar('train/kl_div', scaled_kl.item(), epoch)
tb_writer.add_scalar('train/elbo_loss', elbo_loss.item(), epoch)
tb_writer.add_scalar('train/avu_loss', avu_loss.item(), epoch)
tb_writer.add_scalar('train/loss', loss.item(), epoch)
tb_writer.add_scalar('train/AvU', AvU, epoch)
tb_writer.add_scalar('train/accuracy', acc1.item(), epoch)
tb_writer.flush()
preds = np.hstack(np.asarray(preds_list))
labels = np.hstack(np.asarray(labels_list))
unc_ = np.hstack(np.asarray(unc_list))
unc_correct = np.take(unc_, np.where(preds == labels))
unc_incorrect = np.take(unc_, np.where(preds != labels))
#print('avg unc correct preds: ', np.mean(np.take(unc_,np.where(preds == labels)), axis=1))
#print('avg unc incorrect preds: ', np.mean(np.take(unc_,np.where(preds != labels)), axis=1))
if epoch <= 1:
opt_th = (np.mean(unc_correct, axis=1) +
np.mean(unc_incorrect, axis=1)) / 2
print('opt_th: ', opt_th)
def validate(val_loader, model, criterion, avu_criterion, epoch, args,
tb_writer):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
preds_list = []
labels_list = []
unc_list = []
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if torch.cuda.is_available():
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
else:
images = images.cpu(non_blocking=True)
target = target.cpu(non_blocking=True)
# compute output
output, kl = model(images)
cross_entropy_loss = criterion(output, target)
scaled_kl = (kl.data[0] / len_trainset)
elbo_loss = cross_entropy_loss + scaled_kl
avu_loss = beta * avu_criterion(output, target, opt_th, type=0)
loss = cross_entropy_loss + scaled_kl + avu_loss
output = output.float()
loss = loss.float()
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1,
top5=top5))
return top1.avg
def evaluate(model, val_loader, args, corrupt=None, level=None):
pred_probs_mc = []
test_loss = 0
correct = 0
with torch.no_grad():
pred_probs_mc = []
output_list = []
label_list = []
for batch_idx, (data, target) in enumerate(val_loader):
#print('Batch idx {}, data shape {}, target shape {}'.format(batch_idx, data.shape, target.shape))
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
else:
data, target = data.cpu(), target.cpu()
output_mc = []
output_mc_np = []
for mc_run in range(args.num_monte_carlo):
model.eval()
output, _ = model.forward(data)
#output_mc_np.append(output.data.cpu().numpy())
pred_probs = torch.nn.functional.softmax(output, dim=1)
output_mc_np.append(pred_probs.cpu().data.numpy())
output_mc = torch.from_numpy(
np.mean(np.asarray(output_mc_np), axis=0))
output_list.append(output_mc)
label_list.append(target)
if torch.cuda.is_available():
labels = torch.cat(label_list).cuda()
probs = torch.cat(output_list).cuda()
else:
labels = torch.cat(label_list).cpu()
probs = torch.cat(output_list).cpu()
target_labels = labels.data.cpu().numpy()
pred_mean = probs.data.cpu().numpy()
Y_pred = np.argmax(pred_mean, axis=1)
test_acc = (Y_pred == target_labels).mean()
#brier = np.mean(calib.brier_scores(target_labels, probs=pred_mean))
#ece = calib.expected_calibration_error_multiclass(pred_mean, target_labels)
print('Test accuracy:', test_acc * 100)
#print('Brier score: ', brier)
#print('ECE: ', ece)
if corrupt is not None:
np.save(
args.log_dir +
'/preds/svi_avu_corrupt-static-{}-{}_probs.npy'.format(
corrupt, level), pred_mean)
np.save(
args.log_dir +
'/preds/svi_avu_corrupt-static-{}-{}_labels.npy'.format(
corrupt, level), target_labels)
print('saved predictions')
else:
np.save(args.log_dir + '/preds/svi_avu_test_probs.npy', pred_mean)
np.save(args.log_dir + '/preds/svi_avu_test_labels.npy',
target_labels)
print('saved predictions')
return test_acc
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1**(epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1, )):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()