@@ -50,6 +50,7 @@ selector (this is useful in particular with regular expressions, `Cols`, `Not`,
50
50
See also [`propertynames`](@ref) which returns a `Vector{Symbol}`.
51
51
52
52
# Examples
53
+
53
54
```jldoctest
54
55
julia> df = DataFrame(x1=[1, missing, missing], x2=[3, 2, 4], x3=[3, missing, 2], x4=Union{Int, Missing}[2, 4, 4])
55
56
3×4 DataFrame
@@ -154,6 +155,7 @@ when a column is renamed, its `:note`-style metadata becomes associated to its n
154
155
See also: [`rename`](@ref)
155
156
156
157
# Examples
158
+
157
159
```jldoctest
158
160
julia> df = DataFrame(i=1, x=2, y=3)
159
161
1×3 DataFrame
@@ -298,6 +300,7 @@ new name.
298
300
See also: [`rename!`](@ref)
299
301
300
302
# Examples
303
+
301
304
```jldoctest
302
305
julia> df = DataFrame(i=1, x=2, y=3)
303
306
1×3 DataFrame
@@ -359,6 +362,7 @@ and `2` corresponds to columns.
359
362
See also: [`nrow`](@ref), [`ncol`](@ref)
360
363
361
364
# Examples
365
+
362
366
```jldoctest
363
367
julia> df = DataFrame(a=1:3, b='a':'c');
364
368
@@ -610,6 +614,7 @@ access missing values.
610
614
Metadata: this function drops all metadata.
611
615
612
616
# Examples
617
+
613
618
```jldoctest
614
619
julia> df = DataFrame(i=1:10, x=0.1:0.1:1.0, y='a':'j');
615
620
@@ -1087,6 +1092,7 @@ $METADATA_FIXED
1087
1092
See also: [`filter!`](@ref)
1088
1093
1089
1094
# Examples
1095
+
1090
1096
```jldoctest
1091
1097
julia> df = DataFrame(x=[3, 1, 2, 1], y=["b", "c", "a", "b"])
1092
1098
4×2 DataFrame
@@ -1216,6 +1222,7 @@ $METADATA_FIXED
1216
1222
See also: [`filter`](@ref)
1217
1223
1218
1224
# Examples
1225
+
1219
1226
```jldoctest
1220
1227
julia> df = DataFrame(x=[3, 1, 2, 1], y=["b", "c", "a", "b"])
1221
1228
4×2 DataFrame
@@ -1353,6 +1360,7 @@ See also [`unique`](@ref) and [`unique!`](@ref).
1353
1360
returns at least one column if `df` has at least one column.
1354
1361
1355
1362
# Examples
1363
+
1356
1364
```jldoctest
1357
1365
julia> df = DataFrame(i=1:4, x=[1, 2, 1, 2])
1358
1366
4×2 DataFrame
@@ -1446,6 +1454,7 @@ $METADATA_FIXED
1446
1454
See also: [`unique!`](@ref), [`nonunique`](@ref).
1447
1455
1448
1456
# Examples
1457
+
1449
1458
```jldoctest
1450
1459
julia> df = DataFrame(i=1:4, x=[1, 2, 1, 2])
1451
1460
4×2 DataFrame
@@ -1520,6 +1529,7 @@ $METADATA_FIXED
1520
1529
See also: [`unique!`](@ref), [`nonunique`](@ref).
1521
1530
1522
1531
# Examples
1532
+
1523
1533
```jldoctest
1524
1534
julia> df = DataFrame(i=1:4, x=[1, 2, 1, 2])
1525
1535
4×2 DataFrame
@@ -1582,6 +1592,7 @@ duplicates are allowed.
1582
1592
$METADATA_FIXED
1583
1593
1584
1594
# Examples
1595
+
1585
1596
```jldoctest
1586
1597
julia> df = DataFrame(x=1:2, y='a':'b', z=["x", "y"])
1587
1598
2×3 DataFrame
@@ -2812,6 +2823,8 @@ $METADATA_FIXED
2812
2823
Metadata having other styles is dropped (from parent data frame when `df` is a `SubDataFrame`).
2813
2824
2814
2825
# Examples
2826
+
2827
+ ```jldoctest
2815
2828
julia> df = DataFrame(a=1:5, b=6:10, c=11:15)
2816
2829
5×3 DataFrame
2817
2830
Row │ a b c
@@ -2833,6 +2846,7 @@ julia> permute!(df, [5, 3, 1, 2, 4])
2833
2846
3 │ 1 6 11
2834
2847
4 │ 2 7 12
2835
2848
5 │ 4 9 14
2849
+ ```
2836
2850
"""
2837
2851
Base. permute! (df:: AbstractDataFrame , p:: AbstractVector{<:Integer} ) =
2838
2852
_permutation_helper! (Base. permute!!, df, p)
@@ -2852,6 +2866,7 @@ Metadata having other styles is dropped (from parent data frame when `df` is a `
2852
2866
2853
2867
# Examples
2854
2868
2869
+ ```jldoctest
2855
2870
julia> df = DataFrame(a=1:5, b=6:10, c=11:15)
2856
2871
5×3 DataFrame
2857
2872
Row │ a b c
@@ -2884,6 +2899,7 @@ julia> invpermute!(df, [5, 3, 1, 2, 4])
2884
2899
3 │ 3 8 13
2885
2900
4 │ 4 9 14
2886
2901
5 │ 5 10 15
2902
+ ```
2887
2903
"""
2888
2904
Base. invpermute! (df:: AbstractDataFrame , p:: AbstractVector{<:Integer} ) =
2889
2905
_permutation_helper! (Base. invpermute!!, df, p)
@@ -2898,6 +2914,9 @@ $METADATA_FIXED
2898
2914
2899
2915
# Examples
2900
2916
2917
+ ```jldoctest
2918
+ julia> using Random
2919
+
2901
2920
julia> rng = MersenneTwister(1234);
2902
2921
2903
2922
julia> shuffle(rng, DataFrame(a=1:5, b=1:5))
@@ -2910,6 +2929,7 @@ julia> shuffle(rng, DataFrame(a=1:5, b=1:5))
2910
2929
3 │ 4 4
2911
2930
4 │ 3 3
2912
2931
5 │ 5 5
2932
+ ```
2913
2933
"""
2914
2934
Random. shuffle (df:: AbstractDataFrame ) =
2915
2935
df[randperm (nrow (df)), :]
@@ -2932,6 +2952,9 @@ Metadata having other styles is dropped (from parent data frame when `df` is a `
2932
2952
2933
2953
# Examples
2934
2954
2955
+ ```jldoctest
2956
+ julia> using Random
2957
+
2935
2958
julia> rng = MersenneTwister(1234);
2936
2959
2937
2960
julia> shuffle!(rng, DataFrame(a=1:5, b=1:5))
@@ -2944,6 +2967,7 @@ julia> shuffle!(rng, DataFrame(a=1:5, b=1:5))
2944
2967
3 │ 4 4
2945
2968
4 │ 3 3
2946
2969
5 │ 5 5
2970
+ ```
2947
2971
"""
2948
2972
Random. shuffle! (df:: AbstractDataFrame ) =
2949
2973
permute! (df, randperm (nrow (df)))
0 commit comments