Skip to content

Commit ba84f9f

Browse files
authored
Documentation updates (#365)
* Bump Documenter.jl compat * Add self dep to docs/Project.toml * Split the single doc page into 3 pages * Update docs/make.jl options * Ignore documentation build files * Add backticks to docstring * Update docs/make.jl options for newer Documenter * Add API reference page
1 parent e77f606 commit ba84f9f

File tree

8 files changed

+466
-439
lines changed

8 files changed

+466
-439
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,3 @@
11
Manifest.toml
22
.vscode
3+
docs/build/

docs/Project.toml

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,9 @@
11
[deps]
22
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
3+
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
34

45
[compat]
5-
Documenter = "~0.27"
6+
Documenter = "1"
7+
8+
[sources.Tables]
9+
path = ".."

docs/make.jl

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,20 @@
1-
using Documenter, Tables
1+
using Tables
2+
using Documenter
3+
using Documenter.Remotes: GitHub
24

35
makedocs(;
46
modules=[Tables],
57
format=Documenter.HTML(),
68
pages=[
79
"Home" => "index.md",
10+
"Using the Interface" => "using-the-interface.md",
11+
"Implementing the Interface" => "implementing-the-interface.md",
12+
"API Reference" => "api.md",
813
],
9-
repo="https://github.com/JuliaData/Tables.jl/blob/{commit}{path}#L{line}",
14+
repo=GitHub("JuliaData/Tables.jl"),
1015
sitename="Tables.jl",
1116
authors="Jacob Quinn",
12-
assets=String[],
17+
checkdocs=:none,
1318
)
1419

1520
deploydocs(;

docs/src/api.md

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
# API Reference
2+
3+
## Types
4+
```@autodocs
5+
Modules = [Tables]
6+
Order = [:type]
7+
```
8+
9+
## Functions
10+
```@autodocs
11+
Modules = [Tables]
12+
Order = [:function]
13+
```
Lines changed: 216 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,216 @@
1+
# Implementing the Interface (i.e. becoming a Tables.jl source)
2+
3+
Now that we've seen how one _uses_ the Tables.jl interface, let's walk-through how to implement it; i.e. how can I
4+
make my custom type valid for Tables.jl consumers?
5+
6+
For a type `MyTable`, the interface to becoming a proper table is straightforward:
7+
8+
| Required Methods | Default Definition | Brief Description |
9+
|----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
10+
| `Tables.istable(::Type{MyTable})` | | Declare that your table type implements the interface |
11+
| **One of:** | | |
12+
| `Tables.rowaccess(::Type{MyTable})` | | Declare that your table type defines a `Tables.rows(::MyTable)` method |
13+
| `Tables.rows(x::MyTable)` | | Return an `Tables.AbstractRow`-compatible iterator from your table |
14+
| **Or:** | | |
15+
| `Tables.columnaccess(::Type{MyTable})` | | Declare that your table type defines a `Tables.columns(::MyTable)` method |
16+
| `Tables.columns(x::MyTable)` | | Return an `Tables.AbstractColumns`-compatible object from your table |
17+
| **Optional methods** | | |
18+
| `Tables.schema(x::MyTable)` | `Tables.schema(x) = nothing` | Return a [`Tables.Schema`](@ref) object from your `Tables.AbstractRow` iterator or `Tables.AbstractColumns` object; or `nothing` for unknown schema |
19+
| `Tables.materializer(::Type{MyTable})` | `Tables.columntable` | Declare a "materializer" sink function for your table type that can construct an instance of your type from any Tables.jl input |
20+
| `Tables.subset(x::MyTable, inds; viewhint)` | | Return a row or a sub-table of the original table |
21+
| `DataAPI.nrow(x::MyTable)` | | Return number of rows of table `x` |
22+
| `DataAPI.ncol(x::MyTable)` | | Return number of columns of table `x` |
23+
24+
Based on whether your table type has defined `Tables.rows` or `Tables.columns`, you then ensure that the `Tables.AbstractRow` iterator
25+
or `Tables.AbstractColumns` object satisfies the respective interface.
26+
27+
As an additional source of documentation, see [this discourse post](https://discourse.julialang.org/t/struggling-to-implement-tables-jl-interface-for-vector-mystruct/42318/7?u=quinnj) outlining in detail a walk-through of making a row-oriented table.
28+
29+
## `Tables.AbstractRow`
30+
31+
```@docs; canonical = false
32+
Tables.AbstractRow
33+
```
34+
35+
## `Tables.AbstractColumns`
36+
37+
```@docs; canonical = false
38+
Tables.AbstractColumns
39+
```
40+
41+
## Implementation Example
42+
As an extended example, let's take a look at some code defined in Tables.jl for treating `AbstractVecOrMat`s as tables.
43+
44+
First, we define a special `MatrixTable` type that will wrap an `AbstractVecOrMat`, and allow easy overloading for the
45+
Tables.jl interface.
46+
47+
```julia
48+
struct MatrixTable{T <: AbstractVecOrMat} <: Tables.AbstractColumns
49+
names::Vector{Symbol}
50+
lookup::Dict{Symbol, Int}
51+
matrix::T
52+
end
53+
# declare that MatrixTable is a table
54+
Tables.istable(::Type{<:MatrixTable}) = true
55+
# getter methods to avoid getproperty clash
56+
names(m::MatrixTable) = getfield(m, :names)
57+
matrix(m::MatrixTable) = getfield(m, :matrix)
58+
lookup(m::MatrixTable) = getfield(m, :lookup)
59+
# schema is column names and types
60+
Tables.schema(m::MatrixTable{T}) where {T} = Tables.Schema(names(m), fill(eltype(T), size(matrix(m), 2)))
61+
```
62+
63+
Here we defined `Tables.istable` for all `MatrixTable` types, signaling that they implement the Tables.jl interfaces.
64+
We also defined [`Tables.schema`](@ref) by pulling the column names out that we stored, and since `AbstractVecOrMat` have a single
65+
`eltype`, we repeat it for each column (the call to `fill`). Note that defining [`Tables.schema`](@ref) is optional on tables; by default, `nothing`
66+
is returned and Tables.jl consumers should account for both known and unknown schema cases. Returning a schema when possible allows consumers
67+
to have certain optimizations when they can know the types of all columns upfront (and if the # of columns isn't too large)
68+
to generate more efficient code.
69+
70+
Now, in this example, we're actually going to have `MatrixTable` implement _both_ `Tables.rows` and `Tables.columns`
71+
methods itself, i.e. it's going to return itself from those functions, so here's first how we make our `MatrixTable` a
72+
valid `Tables.AbstractColumns` object:
73+
74+
```julia
75+
# column interface
76+
Tables.columnaccess(::Type{<:MatrixTable}) = true
77+
Tables.columns(m::MatrixTable) = m
78+
# required Tables.AbstractColumns object methods
79+
Tables.getcolumn(m::MatrixTable, ::Type{T}, col::Int, nm::Symbol) where {T} = matrix(m)[:, col]
80+
Tables.getcolumn(m::MatrixTable, nm::Symbol) = matrix(m)[:, lookup(m)[nm]]
81+
Tables.getcolumn(m::MatrixTable, i::Int) = matrix(m)[:, i]
82+
Tables.columnnames(m::MatrixTable) = names(m)
83+
```
84+
85+
We define `columnaccess` for our type, then `columns` just returns the `MatrixTable` itself, and then we define
86+
the three `getcolumn` methods and `columnnames`. Note the use of a `lookup` `Dict` that maps column name to column index
87+
so we can figure out which column to return from the matrix. We're also storing the column names in our `names` field
88+
so the `columnnames` implementation is trivial. And that's it! Literally! It can now be written out to a csv file,
89+
stored in a sqlite or other database, converted to DataFrame or JuliaDB table, etc. Pretty fun.
90+
91+
And now for the `Tables.rows` implementation:
92+
```julia
93+
# declare that any MatrixTable defines its own `Tables.rows` method
94+
rowaccess(::Type{<:MatrixTable}) = true
95+
# just return itself, which means MatrixTable must iterate `Tables.AbstractRow`-compatible objects
96+
rows(m::MatrixTable) = m
97+
# the iteration interface, at a minimum, requires `eltype`, `length`, and `iterate`
98+
# for `MatrixTable` `eltype`, we're going to provide a custom row type
99+
Base.eltype(m::MatrixTable{T}) where {T} = MatrixRow{T}
100+
Base.length(m::MatrixTable) = size(matrix(m), 1)
101+
102+
Base.iterate(m::MatrixTable, st=1) = st > length(m) ? nothing : (MatrixRow(st, m), st + 1)
103+
104+
# a custom row type; acts as a "view" into a row of an AbstractVecOrMat
105+
struct MatrixRow{T} <: Tables.AbstractRow
106+
row::Int
107+
source::MatrixTable{T}
108+
end
109+
# required `Tables.AbstractRow` interface methods (same as for `Tables.AbstractColumns` object before)
110+
# but this time, on our custom row type
111+
getcolumn(m::MatrixRow, ::Type, col::Int, nm::Symbol) =
112+
getfield(getfield(m, :source), :matrix)[getfield(m, :row), col]
113+
getcolumn(m::MatrixRow, i::Int) =
114+
getfield(getfield(m, :source), :matrix)[getfield(m, :row), i]
115+
getcolumn(m::MatrixRow, nm::Symbol) =
116+
getfield(getfield(m, :source), :matrix)[getfield(m, :row), getfield(getfield(m, :source), :lookup)[nm]]
117+
columnnames(m::MatrixRow) = names(getfield(m, :source))
118+
```
119+
Here we start by defining `Tables.rowaccess` and `Tables.rows`, and then the iteration interface methods,
120+
since we declared that a `MatrixTable` itself is an iterator of `Tables.AbstractRow`-compatible objects. For `eltype`,
121+
we say that a `MatrixTable` iterates our own custom row type, `MatrixRow`. `MatrixRow` subtypes
122+
`Tables.AbstractRow`, which provides interface implementations for several useful behaviors (indexing,
123+
iteration, property-access, etc.); essentially it makes our custom `MatrixRow` type more convenient to work with.
124+
125+
Implementing the `Tables.AbstractRow` interface is straightforward, and very similar to our implementation
126+
of `Tables.AbstractColumns` previously (i.e. the same methods for `getcolumn` and `columnnames`).
127+
128+
And that's it. Our `MatrixTable` type is now a fully fledged, valid Tables.jl source and can be used throughout
129+
the ecosystem. Now, this is obviously not a lot of code; but then again, the actual Tables.jl interface
130+
implementations tend to be fairly simple, given the other behaviors that are already defined for table types
131+
(i.e. table types tend to already have a `getcolumn` like function defined).
132+
133+
## `Tables.isrowtable`
134+
135+
One option for certain table types is to define `Tables.isrowtable` to automatically satisfy the Tables.jl interface.
136+
This can be convenient for "natural" table types that already iterate rows.
137+
```@docs; canonical = false
138+
Tables.isrowtable
139+
```
140+
141+
## Testing Tables.jl Implementations
142+
143+
One question that comes up is what the best strategies are for testing a Tables.jl implementation. Continuing with
144+
our `MatrixTable` example, let's see some useful ways to test that things are working as expected.
145+
146+
```julia
147+
mat = [1 4.0 "7"; 2 5.0 "8"; 3 6.0 "9"]
148+
```
149+
150+
First, we define a matrix literal with three columns of various differently typed values.
151+
152+
```julia
153+
# first, create a MatrixTable from our matrix input
154+
mattbl = Tables.table(mat)
155+
# test that the MatrixTable `istable`
156+
@test Tables.istable(typeof(mattbl))
157+
# test that it defines row access
158+
@test Tables.rowaccess(typeof(mattbl))
159+
@test Tables.rows(mattbl) === mattbl
160+
# test that it defines column access
161+
@test Tables.columnaccess(typeof(mattbl))
162+
@test Tables.columns(mattbl) === mattbl
163+
# test that we can access the first "column" of our matrix table by column name
164+
@test mattbl.Column1 == [1,2,3]
165+
# test our `Tables.AbstractColumns` interface methods
166+
@test Tables.getcolumn(mattbl, :Column1) == [1,2,3]
167+
@test Tables.getcolumn(mattbl, 1) == [1,2,3]
168+
@test Tables.columnnames(mattbl) == [:Column1, :Column2, :Column3]
169+
# now let's iterate our MatrixTable to get our first MatrixRow
170+
matrow = first(mattbl)
171+
@test eltype(mattbl) == typeof(matrow)
172+
# now we can test our `Tables.AbstractRow` interface methods on our MatrixRow
173+
@test matrow.Column1 == 1
174+
@test Tables.getcolumn(matrow, :Column1) == 1
175+
@test Tables.getcolumn(matrow, 1) == 1
176+
@test propertynames(mattbl) == propertynames(matrow) == [:Column1, :Column2, :Column3]
177+
```
178+
179+
So, it looks like our `MatrixTable` type is looking good. It's doing everything we'd expect with regards to accessing
180+
its rows or columns via the Tables.jl API methods. Testing a table source like this is fairly straightforward since
181+
we're really just testing that our interface methods are doing what we expect them to do.
182+
183+
Now, while we didn't go over a "sink" function for matrices in our walkthrough, there does indeed exist a `Tables.matrix` function that allows converting any table input source into a plain Julia `Matrix` object.
184+
185+
Having both Tables.jl "source" and "sink" implementations (i.e. a type that is a Tables.jl-compatible source,
186+
as well as a way to _consume_ other tables), allows us to do some additional "round trip" testing:
187+
188+
```julia
189+
rt = [(a=1, b=4.0, c="7"), (a=2, b=5.0, c="8"), (a=3, b=6.0, c="9")]
190+
ct = (a=[1,2,3], b=[4.0, 5.0, 6.0])
191+
```
192+
193+
In addition to our `mat` object earlier, we can define a couple simple "tables"; in this case `rt` is a kind of default "row table" as a `Vector` of `NamedTuple`s, while `ct` is a default "column table" as a `NamedTuple` of `Vector`s. Notice that they contain mostly the same data as our matrix literal earlier, yet in slightly different storage formats. These default "row" and "column" tables are supported by default in Tables.jl due do their natural table representations, and hence can be excellent tools in testing table integrations.
194+
195+
```julia
196+
# let's turn our row table into a plain Julia Matrix object
197+
mat = Tables.matrix(rt)
198+
# test that our matrix came out like we expected
199+
@test mat[:, 1] == [1, 2, 3]
200+
@test size(mat) == (3, 3)
201+
@test eltype(mat) == Any
202+
# so we successfully consumed a row-oriented table,
203+
# now let's try with a column-oriented table
204+
mat2 = Tables.matrix(ct)
205+
@test eltype(mat2) == Float64
206+
@test mat2[:, 1] == ct.a
207+
208+
# now let's take our matrix input, and make a column table out of it
209+
tbl = Tables.table(mat) |> columntable
210+
@test keys(tbl) == (:Column1, :Column2, :Column3)
211+
@test tbl.Column1 == [1, 2, 3]
212+
# and same for a row table
213+
tbl2 = Tables.table(mat2) |> rowtable
214+
@test length(tbl2) == 3
215+
@test map(x->x.Column1, tbl2) == [1.0, 2.0, 3.0]
216+
```

0 commit comments

Comments
 (0)