@@ -9,57 +9,57 @@ IIP = true
9
9
W = WienerProcess (0.0 , zeros (2 ), zeros (2 ))
10
10
addit_autom_inv = CoupledSDEs (f!, idfunc!, zeros (2 ), nothing , σ; noise = W)
11
11
types = addit_autom_inv. noise_type
12
- @test issetequal (types, [ :additive , :autonomous , :linear , :invertible ] )
12
+ @test values (types) == ( true , true , true , true )
13
13
14
14
# Scalar Wiener noise
15
15
W = WienerProcess (0.0 , 0.0 , 0.0 )
16
16
scalar_a = CoupledSDEs (f!, idfunc!, zeros (2 ), nothing , σ; noise = W)
17
17
types = scalar_a. noise_type
18
- @test issetequal (types, [ :scalar , :additive , :autonomous , :linear , :invertible ] )
18
+ @test values (types) == ( true , true , true , true )
19
19
20
20
# invertible correlated Wiener noise
21
21
W = CorrelatedWienerProcess ([1 0.3 ; 0.3 1 ], 0.0 , zeros (2 ), zeros (2 ))
22
22
corr_a = CoupledSDEs (f!, idfunc!, zeros (2 ), nothing , σ; noise = W)
23
23
types = corr_a. noise_type
24
- @test issetequal (types, [ :additive , :autonomous , :linear , :invertible ] )
24
+ @test values (types) == ( true , true , true , true )
25
25
26
26
# invertible correlated Wiener noise
27
27
g! (du, u, p, t) = (du .= [1 0.3 ; 0.3 1 ]; return nothing )
28
28
corr_alt = CoupledSDEs (
29
29
f!, g!, zeros (2 ), nothing , σ, noise_rate_prototype = zeros (2 , 2 ),
30
30
diffeq = (alg = EM (), dt = 0.1 ))
31
31
types = corr_alt. noise_type
32
- @test issetequal (types, [ :additive , :autonomous , :linear , :invertible ] )
32
+ @test values (types) == ( true , true , true , true )
33
33
34
34
# non-invertible correlated Wiener noise
35
35
W = CorrelatedWienerProcess ([1 2 ; 2 4 ], 0.0 , zeros (2 ), zeros (2 ))
36
36
corr_noninv = CoupledSDEs (f!, idfunc!, zeros (2 ), nothing , σ; noise = W)
37
37
types = corr_noninv. noise_type
38
- @test issetequal (types, [ :additive , :autonomous , :linear , :non_invertible ] )
38
+ @test values (types) == ( true , true , true , false )
39
39
40
40
# non-invertible correlated Wiener noise
41
41
g! (du, u, p, t) = (du .= [1 0.3 1 ; 0.3 1 1 ]; return nothing )
42
42
corr_alt = CoupledSDEs (
43
43
f!, g!, zeros (2 ), nothing , σ, noise_rate_prototype = zeros (2 , 3 ),
44
44
diffeq = (alg = EM (), dt = 0.1 ))
45
45
types = corr_alt. noise_type
46
- @test issetequal (types, [ :additive , :autonomous , :linear , :non_invertible ] )
46
+ @test values (types) == ( true , true , true , false )
47
47
48
48
# multiplicative linear Wiener noise
49
49
g! (du, u, p, t) = (du .= u; return nothing )
50
50
linear_multipli = CoupledSDEs (f!, g!, rand (2 ) ./ 10 , (), σ)
51
51
types = linear_multipli. noise_type
52
- @test issetequal (types, [ :multiplicative , :autonomous , :linear ] )
52
+ @test values (types) == ( false , true , true , false )
53
53
54
54
# non-diagonal multiplicative linear Wiener noise
55
55
lin_multipli_alt = CoupledSDEs (
56
56
f!, g!, rand (2 ), (), σ, noise_rate_prototype = zeros (2 , 3 ),
57
57
diffeq = (alg = EM (), dt = 0.1 ))
58
58
types = lin_multipli_alt. noise_type
59
- @test issetequal (types, [ :multiplicative , :autonomous , :linear ] )
59
+ @test values (types) == ( false , true , true , false )
60
60
61
61
# multiplicative nonlinear Wiener noise
62
62
g! (du, u, p, t) = (du .= u .^ 2 ; return nothing )
63
63
nonlinear_multiplicative = CoupledSDEs (f!, g!, rand (2 ), (), σ)
64
64
types = nonlinear_multiplicative. noise_type
65
- @test issetequal (types, [ :multiplicative , :autonomous , :non_linear ] )
65
+ @test values (types) == ( false , true , false , false )
0 commit comments