-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathoptimise1.jl
207 lines (143 loc) · 4.82 KB
/
optimise1.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
struct IntervalMinimum{T<:Real}
interval::Interval{T}
minimum::T
end
Base.isless(a::IntervalMinimum{T}, b::IntervalMinimum{T}) where {T<:Real} = isless(a.minimum, b.minimum)
function minimise1d(f::Function, x::Interval{T}; reltol=1e-3, abstol=1e-3, use_deriv=false, use_second_deriv=false) where {T<:Real}
Q = binary_minheap(IntervalMinimum{T})
global_minimum = f(interval(mid(x))).hi
arg_minima = Interval{T}[]
push!(Q, IntervalMinimum(x, global_minimum))
while !isempty(Q)
p = pop!(Q)
if isempty(p.interval)
continue
end
if p.minimum > global_minimum
continue
end
if use_deriv
deriv = ForwardDiff.derivative(f, p.interval)
if 0 ∉ deriv
continue
end
end
# Second derivative contractor
if use_second_deriv
doublederiv = ForwardDiff.derivative(x->ForwardDiff.derivative(f, x), p.interval)
if doublederiv < 0
continue
end
end
m = mid(p.interval)
current_minimum = f(interval(m)).hi
if current_minimum < global_minimum
global_minimum = current_minimum
end
# Contractor 1
if use_deriv
x = m .+ extended_div((interval(-∞, global_minimum) - f(m)), deriv)
x = x .∩ p.interval
end
if diam(p.interval) < abstol
push!(arg_minima, p.interval)
else
if use_deriv && isempty(x[2])
x1, x2 = bisect(x[1])
push!(Q, IntervalMinimum(x1, f(x1).lo), IntervalMinimum(x2, f(x2).lo))
continue
end
x1, x2 = bisect(p.interval)
push!(Q, IntervalMinimum(x1, f(x1).lo), IntervalMinimum(x2, f(x2).lo))
end
end
lb = minimum(inf.(f.(arg_minima)))
return lb..global_minimum, arg_minima
end
struct IntervalBoxMinimum{N, T<:Real}
interval::IntervalBox{N, T}
minimum::T
end
Base.isless(a::IntervalBoxMinimum{N, T}, b::IntervalBoxMinimum{N, T}) where {N, T<:Real} = isless(a.minimum, b.minimum)
function minimise_icp(f::Function, x::IntervalBox{N, T}, var ; reltol=1e-3, abstol=1e-3) where {N, T<:Real}
Q = binary_minheap(IntervalBoxMinimum{N, T})
global_minimum = ∞
variables = []
for i in var append!(variables, Unknown(i)) end
f_op = f(variables...)
C = Contractor(f_op)
x = C(-∞..global_minimum, x)
arg_minima = IntervalBox{N, T}[]
push!(Q, IntervalBoxMinimum(x, global_minimum))
while !isempty(Q)
p = pop!(Q)
if isempty(p.interval)
continue
end
if p.minimum > global_minimum
continue
end
current_minimum = f(interval.(mid(p.interval))).hi
if current_minimum < global_minimum
global_minimum = current_minimum
end
C = Contractor(f_op)
X = C(-∞..global_minimum, p.interval)
if diam(p.interval) < abstol
push!(arg_minima, p.interval)
else
x1, x2 = bisect(X)
push!(Q, IntervalBoxMinimum(x1, f(x1).lo), IntervalBoxMinimum(x2, f(x2).lo))
end
end
lb = minimum(inf.(f.(arg_minima)))
return lb..global_minimum, arg_minima
end
struct ConstraintCond{T}
f ::Operation
c ::Interval{T}
end
function minimise_icp_constrained(f::Function, x::IntervalBox{N,T}, var, constraints::Vector{ConstraintCond{T}} = Vector{ConstraintCond{T}}(); reltol=1e-3, abstol=1e-3) where {N, T<:Real}
Q = binary_minheap(IntervalBoxMinimum{N, T})
global_minimum = ∞
for t in constraints
C = Contractor(t.f, var)
x = C(t.c, x)
end
variables = []
for i in var append!(variables, Unknown(i)) end
f_op = f(variables...)
C = Contractor(f_op)
x = C(-∞..global_minimum, x)
arg_minima = IntervalBox{N, T}[]
push!(Q, IntervalBoxMinimum(x, global_minimum))
while !isempty(Q)
p = pop!(Q)
if isempty(p.interval)
continue
end
if p.minimum > global_minimum
continue
end
# current_minimum = f(interval.(mid(p.interval))).hi
current_minimum = f(p.interval).hi
if current_minimum < global_minimum
global_minimum = current_minimum
end
C = Contractor(f_op)
X = C(-∞..global_minimum, p.interval)
for t in constraints
C = Contractor(t.f, var)
A = Interval(a)
X = C(A, X)
end
if diam(p.interval) < abstol
push!(arg_minima, p.interval)
else
x1, x2 = bisect(X)
push!(Q, IntervalBoxMinimum(x1, f(x1).lo), IntervalBoxMinimum(x2, f(x2).lo))
end
end
lb = minimum(inf.(f.(arg_minima)))
return lb..global_minimum, arg_minima
end