|
| 1 | +""" |
| 2 | +Preconditions the matrix A and b with the inverse of mid(A) |
| 3 | +""" |
| 4 | +function preconditioner(A::AbstractMatrix, b::AbstractArray) |
| 5 | + |
| 6 | + Aᶜ = mid.(A) |
| 7 | + B = pinv(Aᶜ) # TODO If Aᶜ is singular |
| 8 | + |
| 9 | + return B*A, B*b |
| 10 | + |
| 11 | +end |
| 12 | + |
| 13 | +function newtonnd(f::Function, deriv::Function, x::IntervalBox{NUM, T}; reltol=eps(T), abstol=eps(T), debug=false, debugroot=false) where {T<:AbstractFloat} where {NUM} # TODO Incorporate Hull and Box consistencies |
| 14 | + |
| 15 | + L = IntervalBox{NUM, T}[] # Array to hold the interval boxes still to be processed |
| 16 | + |
| 17 | + R = Root{IntervalBox{NUM, T}}[] # Array to hold the `root` objects obtained |
| 18 | + |
| 19 | + push!(L, x) # Initialize |
| 20 | + n = size(X, 1) |
| 21 | + while !isempty(L) # Until all interval boxes have been processed |
| 22 | + Xᴵ = pop!(L) # Process next interval box |
| 23 | + if !all(0 .∈ f(Xᴵ)) |
| 24 | + continue |
| 25 | + end |
| 26 | + Xᴵ¹ = copy(Xᴵ) |
| 27 | + debug && (print("Current interval popped: "); println(Xᴵ)) |
| 28 | + |
| 29 | + if (isempty(Xᴵ)) |
| 30 | + continue |
| 31 | + end |
| 32 | + if diam(Xᴵ) < reltol |
| 33 | + if max((abs.(IntervalBox(f(Xᴵ))))...) < abstol |
| 34 | + |
| 35 | + debugroot && @show "Tolerance root found", Xᴵ |
| 36 | + |
| 37 | + push!(R, Root(Xᴵ, :unknown)) |
| 38 | + continue |
| 39 | + else |
| 40 | + continue |
| 41 | + end |
| 42 | + end |
| 43 | + |
| 44 | + next_iter = false |
| 45 | + |
| 46 | + while true |
| 47 | + |
| 48 | + use_B = false |
| 49 | + next_iter = false |
| 50 | + |
| 51 | + initial_width = diam(Xᴵ) |
| 52 | + debug && (print("Current interval popped: "); println(Xᴵ)) |
| 53 | + if use_B |
| 54 | + # TODO Compute X using B in Step 19 |
| 55 | + else |
| 56 | + X = mid(Xᴵ) |
| 57 | + end |
| 58 | + |
| 59 | + J = SMatrix{n}{n}(deriv(Xᴵ)) # either jacobian or calculated using slopes |
| 60 | + |
| 61 | + # Xᴵ = IntervalBox((X + linear_hull(J, -f(interval.(X)))) .∩ Xᴵ) |
| 62 | + Xᴵ = IntervalBox((X + (J \ -f(interval.(X)))) .∩ Xᴵ) |
| 63 | + |
| 64 | + if (isempty(Xᴵ)) |
| 65 | + next_iter = true |
| 66 | + break |
| 67 | + end |
| 68 | + |
| 69 | + if diam(Xᴵ) < reltol |
| 70 | + if max((abs.(IntervalBox(f(Xᴵ))))...) < abstol |
| 71 | + |
| 72 | + debugroot && @show "Tolerance root found", Xᴵ |
| 73 | + next_iter = true |
| 74 | + push!(R, Root(Xᴵ, :unknown)) |
| 75 | + break |
| 76 | + else |
| 77 | + next_iter = true |
| 78 | + break |
| 79 | + end |
| 80 | + end |
| 81 | + |
| 82 | + if all(0 .∈ f(interval.(X))) && initial_width > 0.9diam(Xᴵ) |
| 83 | + next_iter = true |
| 84 | + push!(R, Root(Xᴵ, :unique)) |
| 85 | + break |
| 86 | + end |
| 87 | + |
| 88 | + if diam(Xᴵ) > initial_width / 8 |
| 89 | + break |
| 90 | + end |
| 91 | + |
| 92 | + #Criterion C |
| 93 | + |
| 94 | + |
| 95 | + end |
| 96 | + |
| 97 | + if next_iter |
| 98 | + continue |
| 99 | + end |
| 100 | + |
| 101 | + if 0.25 * diam(Xᴵ¹) ≤ max((diam.(Xᴵ¹) .- diam.(Xᴵ))...) |
| 102 | + push!(L, Xᴵ) |
| 103 | + else |
| 104 | + push!(L, bisect(Xᴵ)...) |
| 105 | + end |
| 106 | + end |
| 107 | + |
| 108 | + R |
| 109 | + |
| 110 | +end |
| 111 | + |
| 112 | +newtonnd(f::Function, x::IntervalBox{NUM, T}; args...) where {T<:AbstractFloat} where {NUM} = newtonnd(f, x->ForwardDiff.jacobian(f,x), x; args...) |
0 commit comments