Skip to content

Conversation

@amontoison
Copy link
Member

@amontoison amontoison commented Feb 1, 2025

close #325
cc @PierreMartinon @jbcaillau
It helps determine how much time you can gain by detecting the sparsity pattern yourself.

@amontoison amontoison requested a review from tmigot February 1, 2025 02:17
@amontoison
Copy link
Member Author

amontoison commented Feb 1, 2025

I also tested it with the example in the documentation:
https://jso.dev/ADNLPModels.jl/dev/sparsity_pattern/

julia> @elapsed begin
         nlp = ADNLPModel!(f, xi, lvar, uvar, [1], [1], T[1], c!, lcon, ucon; hessian_backend = ADNLPModels.EmptyADbackend, show_time=true)
         end
gradient backend ADNLPModels.ForwardDiffADGradient: 2.3452e-5 seconds;
hprod    backend ADNLPModels.ForwardDiffADHvprod: 0.000875063 seconds;
jprod    backend ADNLPModels.ForwardDiffADJprod: 2.0362e-5 seconds;
jtprod   backend ADNLPModels.ForwardDiffADJtprod: 2.1778e-5 seconds;
  • Sparsity pattern detection of the Jacobian: 1.114339083 seconds.
  • Coloring of the sparse Jacobian: 0.005564487 seconds.
  • Allocation of the AD buffers for the sparse Jacobian: 4.063e-6 seconds.
jacobian backend ADNLPModels.SparseADJacobian: 1.120131293 seconds;
hessian  backend ADNLPModels.EmptyADbackend: 6.645e-6 seconds;
ghjvprod backend ADNLPModels.ForwardDiffADGHjvprod: 3.881e-6 seconds. 

1.126924784
julia> @elapsed begin
         Is = Vector{Int}(undef, 4 * (N - 1))
         Js = Vector{Int}(undef, 4 * (N - 1))
         Vs = ones(Bool, 4 * (N - 1))
         for i = 1:(N - 1)
           Is[((i - 1) * 4 + 1):(i * 4)] = [i; i; i; i]
           Js[((i - 1) * 4 + 1):(i * 4)] = [i; i + 1; N + i; N + i + 1]
         end
         J = sparse(Is, Js, Vs, N - 1, n)
       end
0.161432748
julia> @elapsed begin
         Is = Vector{Int}(undef, 4 * (N - 1))
         Js = Vector{Int}(undef, 4 * (N - 1))
         Vs = ones(Bool, 4 * (N - 1))
         for i = 1:(N - 1)
           Is[((i - 1) * 4 + 1):(i * 4)] = [i; i; i; i]
           Js[((i - 1) * 4 + 1):(i * 4)] = [i; i + 1; N + i; N + i + 1]
         end
         J = sparse(Is, Js, Vs, N - 1, n)

         jac_back = ADNLPModels.SparseADJacobian(n, f, N - 1, c!, J, show_time=true);
         nlp = ADNLPModel!(f, xi, lvar, uvar, [1], [1], T[1], c!, lcon, ucon; hessian_backend = ADNLPModels.EmptyADbackend, jacobian_backend = jac_back);
       end
  • Coloring of the sparse Jacobian: 0.005673536 seconds.
  • Allocation of the AD buffers for the sparse Jacobian: 3.4547e-5 seconds.
0.191296527

@github-actions
Copy link
Contributor

github-actions bot commented Feb 1, 2025

Package name latest stable
ExpressionTreeForge
JSOSuite
PartiallySeparableNLPModels
PartiallySeparableSolvers
SolverTest

@jbcaillau
Copy link

@amontoison do you mean that it shows how much time is spent for the automatic detection?

PS. side note: recent PR in ADNLPModels fail on buildkite; I have a rough idea of what is does (it's not free, AFAIR), what is the benefit in you case? do you recommend it?

@amontoison
Copy link
Member Author

@jbcaillau
The PR gives more details on the time spent in the sparse backends.
Only the total time to create the sparse backends was computed before.
Now I.also display the time spend in the three phases of a sparse backend (sparsity detection / coloring / AD preparation with allocation of buffers)

@amontoison
Copy link
Member Author

Buildkite is free if you request your packages to be part of JuliaGPU CI buildkite:
https://github.com/JuliaGPU/buildkite

We can have CI with GPU for free on all platforms (NVIDIA, AMD, Intel, Apple). It's why I installed on it Krylov.jl, MadNLP.jl, ExaModels.jl, etc...
Here, I requested it because I plan to support AD on GPU quite soon and I will be able to test the support with buildkite.

I also use buildkite to test some extensions like Enzyme / Zygote in ADNLPModels.jl.
Enzyme did a recent a update that broke the unit tests here. Michel works on a fix (#322).

@amontoison
Copy link
Member Author

If you use GPU in your packages, I highly recommend it!

Copy link
Member

@tmigot tmigot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That's a good idea, thanks

@github-actions
Copy link
Contributor

github-actions bot commented Feb 1, 2025

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 1 Feb 2025 - 17:57
    • Baseline: 1 Feb 2025 - 18:14
  • Package commits:
    • Target: 5105e0
    • Baseline: 1fc3b9
  • Julia commits:
    • Target: d63ade
    • Baseline: d63ade
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["jac_coord", "optimized", "Float32", "scalable", "sparse", "catenary"] 0.91 (5%) ✅ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "elec"] 0.86 (5%) ✅ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "hovercraft1d"] 0.67 (5%) ✅ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon1"] 0.62 (5%) ✅ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon3"] 0.93 (5%) ✅ 1.00 (1%)
["jac_coord", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 1.11 (5%) ❌ 1.00 (1%)
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.08 (5%) ❌ 1.00 (1%)
["jac_coord", "optimized", "Float64", "scalable", "sparse", "structural"] 1.06 (5%) ❌ 1.00 (1%)
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "dixon3dq"] 0.92 (5%) ✅ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 1.06 (5%) ❌ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 0.92 (5%) ✅ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 0.88 (5%) ✅ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 0.92 (5%) ✅ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 0.91 (5%) ✅ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 0.91 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 0.95 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 0.85 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 0.94 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 0.82 (5%) ✅ 1.01 (1%) ❌
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 0.79 (5%) ✅ 1.01 (1%) ❌
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 0.80 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 0.84 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 0.84 (5%) ✅ 1.01 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 0.75 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 0.82 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 0.92 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 0.78 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 0.93 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 0.79 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 0.71 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 0.94 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["jac_coord", "optimized", "Float32", "scalable", "sparse"]
  • ["jac_coord", "optimized", "Float64", "scalable", "sparse"]
  • ["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse"]
  • ["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       8216 s          0 s        574 s      15458 s          0 s
       #2     0 MHz      10704 s          0 s        562 s      12993 s          0 s
       #3     0 MHz       8544 s          0 s        536 s      15142 s          0 s
       #4     0 MHz      10303 s          0 s        569 s      13397 s          0 s
  Memory: 15.61526870727539 GB (12574.16796875 MB free)
  Uptime: 2435.27 sec
  Load Avg:  1.13  1.07  1.24
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      11575 s          0 s        763 s      21910 s          0 s
       #2     0 MHz      15673 s          0 s        712 s      17878 s          0 s
       #3     0 MHz      11079 s          0 s        724 s      22419 s          0 s
       #4     0 MHz      13112 s          0 s        757 s      20403 s          0 s
  Memory: 15.61526870727539 GB (12906.27734375 MB free)
  Uptime: 3436.99 sec
  Load Avg:  1.12  1.17  1.31
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 17:57
  • Package commit: 5105e0
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["jac_coord", "optimized", "Float32", "scalable", "sparse", "camshape"] 40.796 μs (5%) 20.06 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "catenary"] 19.757 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "chain"] 31.588 μs (5%) 14.19 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "channel"] 1.715 ms (5%) 30.75 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "clnlbeam"] 39.885 μs (5%) 10.88 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "controlinvestment"] 88.274 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "elec"] 11.532 μs (5%) 4.44 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "hovercraft1d"] 945.800 ns (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "marine"] 38.021 μs (5%) 8.81 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon1"] 677.198 ns (5%) 4.02 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon3"] 19.396 μs (5%) 12.25 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "robotarm"] 33.382 μs (5%) 13.56 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "structural"] 3.210 μs (5%) 50.52 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "camshape"] 49.913 μs (5%) 39.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "catenary"] 21.500 μs (5%) 16.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "chain"] 42.008 μs (5%) 27.81 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "channel"] 2.044 ms (5%) 61.00 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 45.294 μs (5%) 21.25 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 88.806 μs (5%) 16.12 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "elec"] 11.822 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 1.455 μs (5%) 15.70 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "marine"] 40.356 μs (5%) 17.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.026 μs (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon3"] 20.809 μs (5%) 23.94 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "robotarm"] 38.631 μs (5%) 26.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "structural"] 5.805 μs (5%) 100.89 KiB (1%) 4
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglina"] 33.308 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglinb"] 5.491 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "bdqrtic"] 34.975 μs (5%) 23.73 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brownal"] 5.587 ms (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "broyden3d"] 16.761 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brybnd"] 116.978 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "dixon3dq"] 10.971 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "errinros_mod"] 31.469 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "freuroth"] 18.053 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "hovercraft1d"] 5.629 μs (5%) 1.66 KiB (1%) 5
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "integreq"] 34.601 s (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "morebv"] 216.272 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "penalty1"] 3.021 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "power"] 2.042 ms (5%) 4.30 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "sbrybnd"] 114.914 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "spmsrtls"] 34.625 μs (5%) 19.86 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "tquartic"] 11.502 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 35.432 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 6.305 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 36.417 μs (5%) 47.05 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 6.408 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 18.364 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 128.510 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 12.052 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 44.022 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 19.667 μs (5%) 31.61 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 5.771 μs (5%) 2.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 38.518 s (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 180.836 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 3.075 ms (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.169 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 119.312 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 36.688 μs (5%) 39.36 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 12.383 μs (5%) 15.98 KiB (1%) 6
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 592.523 μs (5%) 1.95 MiB (1%) 21430
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 306.660 μs (5%) 843.10 KiB (1%) 8745
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 420.643 μs (5%) 1.31 MiB (1%) 10816
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 2.608 ms (5%) 4.47 MiB (1%) 63583
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 223.526 μs (5%) 760.18 KiB (1%) 6764
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 375.297 μs (5%) 1.20 MiB (1%) 12903
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 204.020 μs (5%) 739.64 KiB (1%) 6364
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 109.364 μs (5%) 455.12 KiB (1%) 3411
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 561.364 μs (5%) 1.14 MiB (1%) 13663
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 100.387 μs (5%) 381.04 KiB (1%) 3344
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 363.266 μs (5%) 1.21 MiB (1%) 11403
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 427.456 μs (5%) 1.31 MiB (1%) 12748
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.208 ms (5%) 6.79 MiB (1%) 18548
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 85.612 ms (5%) 44.25 MiB (1%) 771635
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 34.443 ms (5%) 16.98 MiB (1%) 289142
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 56.664 ms (5%) 24.45 MiB (1%) 431469
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 274.981 ms (5%) 133.52 MiB (1%) 2411067
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 22.528 ms (5%) 10.70 MiB (1%) 183045
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 35.208 ms (5%) 18.14 MiB (1%) 315020
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 13.868 ms (5%) 7.66 MiB (1%) 133256
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 1.830 ms (5%) 1.36 MiB (1%) 22886
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 21.750 ms (5%) 11.76 MiB (1%) 201169
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 1.853 ms (5%) 1.29 MiB (1%) 22859
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 33.286 ms (5%) 16.84 MiB (1%) 298888
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 47.938 ms (5%) 24.03 MiB (1%) 415611
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 7.547 ms (5%) 10.14 MiB (1%) 88863

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["jac_coord", "optimized", "Float32", "scalable", "sparse"]
  • ["jac_coord", "optimized", "Float64", "scalable", "sparse"]
  • ["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse"]
  • ["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       8216 s          0 s        574 s      15458 s          0 s
       #2     0 MHz      10704 s          0 s        562 s      12993 s          0 s
       #3     0 MHz       8544 s          0 s        536 s      15142 s          0 s
       #4     0 MHz      10303 s          0 s        569 s      13397 s          0 s
  Memory: 15.61526870727539 GB (12574.16796875 MB free)
  Uptime: 2435.27 sec
  Load Avg:  1.13  1.07  1.24
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 18:14
  • Package commit: 1fc3b9
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["jac_coord", "optimized", "Float32", "scalable", "sparse", "camshape"] 41.517 μs (5%) 20.06 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "catenary"] 21.640 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "chain"] 33.192 μs (5%) 14.19 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "channel"] 1.726 ms (5%) 30.75 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "clnlbeam"] 41.668 μs (5%) 10.88 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "controlinvestment"] 92.683 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "elec"] 13.375 μs (5%) 4.44 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "hovercraft1d"] 1.402 μs (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "marine"] 39.673 μs (5%) 8.81 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon1"] 1.090 μs (5%) 4.02 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon3"] 20.948 μs (5%) 12.25 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "robotarm"] 34.855 μs (5%) 13.56 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "structural"] 3.158 μs (5%) 50.52 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "camshape"] 49.782 μs (5%) 39.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "catenary"] 21.751 μs (5%) 16.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "chain"] 42.229 μs (5%) 27.81 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "channel"] 2.035 ms (5%) 61.00 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 45.865 μs (5%) 21.25 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 87.803 μs (5%) 16.12 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "elec"] 12.003 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 1.316 μs (5%) 15.70 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "marine"] 40.165 μs (5%) 17.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon1"] 949.556 ns (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon3"] 20.909 μs (5%) 23.94 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "robotarm"] 38.662 μs (5%) 26.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "structural"] 5.484 μs (5%) 100.89 KiB (1%) 4
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglina"] 33.228 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglinb"] 5.524 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "bdqrtic"] 35.286 μs (5%) 23.73 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brownal"] 5.580 ms (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "broyden3d"] 17.302 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brybnd"] 118.060 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "dixon3dq"] 11.862 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "errinros_mod"] 31.278 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "freuroth"] 17.612 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "hovercraft1d"] 5.717 μs (5%) 1.66 KiB (1%) 5
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "integreq"] 34.586 s (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "morebv"] 220.160 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "penalty1"] 2.883 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "power"] 2.043 ms (5%) 4.30 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "sbrybnd"] 116.707 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "spmsrtls"] 35.766 μs (5%) 19.86 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "tquartic"] 11.802 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 35.438 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 6.247 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 38.021 μs (5%) 47.05 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 6.025 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 19.957 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 130.724 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 13.645 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 45.675 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 21.450 μs (5%) 31.61 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 6.354 μs (5%) 2.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 38.448 s (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 182.410 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 3.070 ms (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.099 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 121.997 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 37.830 μs (5%) 39.36 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 13.585 μs (5%) 15.98 KiB (1%) 6
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 611.307 μs (5%) 1.95 MiB (1%) 21432
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 323.371 μs (5%) 843.23 KiB (1%) 8749
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 418.319 μs (5%) 1.31 MiB (1%) 10820
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 2.563 ms (5%) 4.47 MiB (1%) 63582
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 226.601 μs (5%) 760.30 KiB (1%) 6768
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 375.088 μs (5%) 1.20 MiB (1%) 12907
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 212.786 μs (5%) 739.77 KiB (1%) 6368
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 112.229 μs (5%) 455.02 KiB (1%) 3405
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 661.381 μs (5%) 1.14 MiB (1%) 13667
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 102.801 μs (5%) 381.16 KiB (1%) 3348
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 372.413 μs (5%) 1.21 MiB (1%) 11408
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 452.662 μs (5%) 1.31 MiB (1%) 12765
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.212 ms (5%) 6.79 MiB (1%) 18552
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 104.547 ms (5%) 43.70 MiB (1%) 762638
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 43.334 ms (5%) 16.80 MiB (1%) 286156
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 70.635 ms (5%) 24.36 MiB (1%) 429977
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 326.292 ms (5%) 133.52 MiB (1%) 2411064
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 26.771 ms (5%) 10.64 MiB (1%) 182051
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 47.062 ms (5%) 18.14 MiB (1%) 315022
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 16.928 ms (5%) 7.66 MiB (1%) 133258
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 1.978 ms (5%) 1.36 MiB (1%) 22878
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 27.765 ms (5%) 11.76 MiB (1%) 201171
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 1.989 ms (5%) 1.29 MiB (1%) 22861
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 42.271 ms (5%) 16.84 MiB (1%) 298891
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 67.781 ms (5%) 24.03 MiB (1%) 415626
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 8.010 ms (5%) 10.14 MiB (1%) 88865

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["jac_coord", "optimized", "Float32", "scalable", "sparse"]
  • ["jac_coord", "optimized", "Float64", "scalable", "sparse"]
  • ["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse"]
  • ["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      11575 s          0 s        763 s      21910 s          0 s
       #2     0 MHz      15673 s          0 s        712 s      17878 s          0 s
       #3     0 MHz      11079 s          0 s        724 s      22419 s          0 s
       #4     0 MHz      13112 s          0 s        757 s      20403 s          0 s
  Memory: 15.61526870727539 GB (12906.27734375 MB free)
  Uptime: 3436.99 sec
  Load Avg:  1.12  1.17  1.31
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.85
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@github-actions
Copy link
Contributor

github-actions bot commented Feb 1, 2025

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 1 Feb 2025 - 17:58
    • Baseline: 1 Feb 2025 - 18:15
  • Package commits:
    • Target: 5105e0
    • Baseline: 1fc3b9
  • Julia commits:
    • Target: d63ade
    • Baseline: d63ade
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["jac_coord", "optimized", "Float32", "scalable", "sparse", "camshape"] 1.06 (5%) ❌ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "channel"] 0.93 (5%) ✅ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "elec"] 1.07 (5%) ❌ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "hovercraft1d"] 1.25 (5%) ❌ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon1"] 1.39 (5%) ❌ 1.00 (1%)
["jac_coord", "optimized", "Float32", "scalable", "sparse", "structural"] 1.43 (5%) ❌ 1.00 (1%)
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "freuroth"] 1.13 (5%) ❌ 1.00 (1%)
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "hovercraft1d"] 1.08 (5%) ❌ 1.00 (1%)
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "tquartic"] 1.08 (5%) ❌ 1.00 (1%)
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 1.09 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 0.90 (5%) ✅ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 1.08 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.06 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 1.76 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 2.05 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 2.04 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 1.81 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 1.92 (5%) ❌ 1.01 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 1.94 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 2.08 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 1.85 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 1.94 (5%) ❌ 1.00 (1%)
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 1.58 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["jac_coord", "optimized", "Float32", "scalable", "sparse"]
  • ["jac_coord", "optimized", "Float64", "scalable", "sparse"]
  • ["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse"]
  • ["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       9770 s          0 s        598 s      14076 s          0 s
       #2     0 MHz      10051 s          0 s        579 s      13842 s          0 s
       #3     0 MHz       9830 s          0 s        572 s      14040 s          0 s
       #4     0 MHz       8933 s          0 s        559 s      14951 s          0 s
  Memory: 15.61526107788086 GB (12593.26171875 MB free)
  Uptime: 2455.88 sec
  Load Avg:  1.07  1.08  1.25
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      12900 s          0 s        784 s      20992 s          0 s
       #2     0 MHz      13005 s          0 s        777 s      20920 s          0 s
       #3     0 MHz      13551 s          0 s        742 s      20381 s          0 s
       #4     0 MHz      13077 s          0 s        760 s      20839 s          0 s
  Memory: 15.61526107788086 GB (12914.828125 MB free)
  Uptime: 3480.67 sec
  Load Avg:  1.06  1.12  1.27
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 17:58
  • Package commit: 5105e0
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["jac_coord", "optimized", "Float32", "scalable", "sparse", "camshape"] 42.389 μs (5%) 20.06 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "catenary"] 21.059 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "chain"] 32.921 μs (5%) 14.19 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "channel"] 1.734 ms (5%) 30.75 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "clnlbeam"] 41.256 μs (5%) 10.88 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "controlinvestment"] 90.339 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "elec"] 12.493 μs (5%) 4.44 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "hovercraft1d"] 1.311 μs (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "marine"] 39.283 μs (5%) 8.81 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon1"] 1.105 μs (5%) 4.02 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon3"] 20.268 μs (5%) 12.25 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "robotarm"] 34.355 μs (5%) 13.56 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "structural"] 3.804 μs (5%) 50.52 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "camshape"] 49.763 μs (5%) 39.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "catenary"] 21.781 μs (5%) 16.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "chain"] 42.980 μs (5%) 27.81 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "channel"] 2.050 ms (5%) 61.00 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 45.535 μs (5%) 21.25 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 91.009 μs (5%) 16.12 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "elec"] 12.704 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 1.631 μs (5%) 15.70 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "marine"] 40.585 μs (5%) 17.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.157 μs (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon3"] 21.700 μs (5%) 23.94 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "robotarm"] 39.494 μs (5%) 26.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "structural"] 6.213 μs (5%) 100.89 KiB (1%) 4
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglina"] 34.209 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglinb"] 5.422 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "bdqrtic"] 36.107 μs (5%) 23.73 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brownal"] 5.715 ms (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "broyden3d"] 18.023 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brybnd"] 117.979 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "dixon3dq"] 11.792 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "errinros_mod"] 32.360 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "freuroth"] 19.606 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "hovercraft1d"] 5.958 μs (5%) 1.66 KiB (1%) 5
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "integreq"] 34.587 s (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "morebv"] 220.130 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "penalty1"] 2.905 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "power"] 2.144 ms (5%) 4.30 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "sbrybnd"] 117.609 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "spmsrtls"] 35.556 μs (5%) 19.86 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "tquartic"] 12.794 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 35.071 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 7.127 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 37.470 μs (5%) 47.05 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 6.126 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 19.006 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 129.490 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 12.814 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 45.014 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 20.448 μs (5%) 31.61 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 5.984 μs (5%) 2.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 38.496 s (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 182.100 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 3.068 ms (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.100 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 120.014 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 36.598 μs (5%) 39.36 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 13.175 μs (5%) 15.98 KiB (1%) 6
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 653.156 μs (5%) 1.95 MiB (1%) 21430
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 320.236 μs (5%) 843.10 KiB (1%) 8745
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 451.079 μs (5%) 1.31 MiB (1%) 10816
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 2.570 ms (5%) 4.47 MiB (1%) 63583
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 232.352 μs (5%) 760.18 KiB (1%) 6764
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 388.463 μs (5%) 1.20 MiB (1%) 12903
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 225.029 μs (5%) 739.64 KiB (1%) 6364
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 129.561 μs (5%) 455.12 KiB (1%) 3411
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 615.435 μs (5%) 1.14 MiB (1%) 13663
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 116.087 μs (5%) 381.04 KiB (1%) 3344
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 386.319 μs (5%) 1.21 MiB (1%) 11403
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 459.386 μs (5%) 1.31 MiB (1%) 12760
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.316 ms (5%) 6.79 MiB (1%) 18548
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 184.355 ms (5%) 44.25 MiB (1%) 771635
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 86.211 ms (5%) 16.98 MiB (1%) 289142
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 140.480 ms (5%) 24.45 MiB (1%) 431469
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 554.468 ms (5%) 133.52 MiB (1%) 2411067
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 53.985 ms (5%) 10.70 MiB (1%) 183045
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 85.791 ms (5%) 18.14 MiB (1%) 315020
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 33.009 ms (5%) 7.66 MiB (1%) 133256
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 1.980 ms (5%) 1.36 MiB (1%) 22886
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 50.881 ms (5%) 11.76 MiB (1%) 201169
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 1.945 ms (5%) 1.29 MiB (1%) 22859
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 80.535 ms (5%) 16.84 MiB (1%) 298888
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 103.594 ms (5%) 24.03 MiB (1%) 415623
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 8.066 ms (5%) 10.14 MiB (1%) 88863

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["jac_coord", "optimized", "Float32", "scalable", "sparse"]
  • ["jac_coord", "optimized", "Float64", "scalable", "sparse"]
  • ["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse"]
  • ["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz       9770 s          0 s        598 s      14076 s          0 s
       #2     0 MHz      10051 s          0 s        579 s      13842 s          0 s
       #3     0 MHz       9830 s          0 s        572 s      14040 s          0 s
       #4     0 MHz       8933 s          0 s        559 s      14951 s          0 s
  Memory: 15.61526107788086 GB (12593.26171875 MB free)
  Uptime: 2455.88 sec
  Load Avg:  1.07  1.08  1.25
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 18:15
  • Package commit: 1fc3b9
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["jac_coord", "optimized", "Float32", "scalable", "sparse", "camshape"] 39.875 μs (5%) 20.06 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "catenary"] 20.538 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "chain"] 31.799 μs (5%) 14.19 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "channel"] 1.862 ms (5%) 30.75 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "clnlbeam"] 40.426 μs (5%) 10.88 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "controlinvestment"] 87.624 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "elec"] 11.692 μs (5%) 4.44 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "hovercraft1d"] 1.046 μs (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "marine"] 38.372 μs (5%) 8.81 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon1"] 795.762 ns (5%) 4.02 KiB (1%) 4
["jac_coord", "optimized", "Float32", "scalable", "sparse", "polygon3"] 19.586 μs (5%) 12.25 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "robotarm"] 33.332 μs (5%) 13.56 KiB (1%) 9
["jac_coord", "optimized", "Float32", "scalable", "sparse", "structural"] 2.657 μs (5%) 50.52 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "camshape"] 49.752 μs (5%) 39.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "catenary"] 21.950 μs (5%) 16.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "chain"] 42.679 μs (5%) 27.81 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "channel"] 2.045 ms (5%) 61.00 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 45.544 μs (5%) 21.25 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 90.168 μs (5%) 16.12 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "elec"] 12.403 μs (5%) 8.31 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 1.582 μs (5%) 15.70 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "marine"] 40.867 μs (5%) 17.06 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon1"] 1.164 μs (5%) 7.89 KiB (1%) 4
["jac_coord", "optimized", "Float64", "scalable", "sparse", "polygon3"] 21.911 μs (5%) 23.94 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "robotarm"] 39.263 μs (5%) 26.56 KiB (1%) 9
["jac_coord", "optimized", "Float64", "scalable", "sparse", "structural"] 6.258 μs (5%) 100.89 KiB (1%) 4
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglina"] 33.432 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "arglinb"] 5.649 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "bdqrtic"] 35.235 μs (5%) 23.73 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brownal"] 5.652 ms (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "broyden3d"] 17.292 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "brybnd"] 117.328 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "dixon3dq"] 11.732 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "errinros_mod"] 31.659 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "freuroth"] 17.382 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "hovercraft1d"] 5.502 μs (5%) 1.66 KiB (1%) 5
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "integreq"] 34.631 s (5%) 3.82 MiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "morebv"] 221.653 μs (5%) 12.11 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "penalty1"] 2.902 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "power"] 2.064 ms (5%) 4.30 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "sbrybnd"] 116.737 μs (5%) 27.67 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "spmsrtls"] 35.075 μs (5%) 19.86 KiB (1%) 6
["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse", "tquartic"] 11.813 μs (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 35.558 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 6.542 ms (5%) 15.26 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 37.230 μs (5%) 47.05 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 6.080 ms (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 18.976 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 129.721 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 12.703 μs (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 44.994 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 20.247 μs (5%) 31.61 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 5.853 μs (5%) 2.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 38.464 s (5%) 7.63 MiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 181.999 μs (5%) 23.80 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 3.070 ms (5%) 15.98 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.097 ms (5%) 8.17 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 121.056 μs (5%) 54.92 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 36.588 μs (5%) 39.36 KiB (1%) 6
["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 13.044 μs (5%) 15.98 KiB (1%) 6
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 633.469 μs (5%) 1.95 MiB (1%) 21432
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 353.989 μs (5%) 843.23 KiB (1%) 8749
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 434.679 μs (5%) 1.31 MiB (1%) 10820
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 2.593 ms (5%) 4.47 MiB (1%) 63582
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 243.553 μs (5%) 760.30 KiB (1%) 6768
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 393.943 μs (5%) 1.20 MiB (1%) 12907
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 218.487 μs (5%) 739.77 KiB (1%) 6368
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 120.284 μs (5%) 455.02 KiB (1%) 3405
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 601.560 μs (5%) 1.14 MiB (1%) 13667
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 113.662 μs (5%) 381.16 KiB (1%) 3348
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 391.097 μs (5%) 1.21 MiB (1%) 11408
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 468.713 μs (5%) 1.31 MiB (1%) 12765
["jacobian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.245 ms (5%) 6.79 MiB (1%) 18552
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 104.958 ms (5%) 44.25 MiB (1%) 771638
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 42.153 ms (5%) 16.98 MiB (1%) 289144
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 68.998 ms (5%) 24.45 MiB (1%) 431471
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 305.870 ms (5%) 133.52 MiB (1%) 2411064
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 28.188 ms (5%) 10.64 MiB (1%) 182051
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 44.187 ms (5%) 18.14 MiB (1%) 315022
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 15.892 ms (5%) 7.66 MiB (1%) 133258
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 1.937 ms (5%) 1.36 MiB (1%) 22878
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 27.541 ms (5%) 11.76 MiB (1%) 201171
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 1.909 ms (5%) 1.29 MiB (1%) 22861
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 41.479 ms (5%) 16.84 MiB (1%) 298891
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 65.738 ms (5%) 24.03 MiB (1%) 415626
["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 7.920 ms (5%) 10.14 MiB (1%) 88865

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["jac_coord", "optimized", "Float32", "scalable", "sparse"]
  • ["jac_coord", "optimized", "Float64", "scalable", "sparse"]
  • ["jac_coord_residual", "optimized", "Float32", "scalable_nls", "sparse"]
  • ["jac_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["jacobian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      12900 s          0 s        784 s      20992 s          0 s
       #2     0 MHz      13005 s          0 s        777 s      20920 s          0 s
       #3     0 MHz      13551 s          0 s        742 s      20381 s          0 s
       #4     0 MHz      13077 s          0 s        760 s      20839 s          0 s
  Memory: 15.61526107788086 GB (12914.828125 MB free)
  Uptime: 3480.67 sec
  Load Avg:  1.06  1.12  1.27
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.85
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@github-actions
Copy link
Contributor

github-actions bot commented Feb 1, 2025

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 1 Feb 2025 - 19:30
    • Baseline: 1 Feb 2025 - 20:34
  • Package commits:
    • Target: 5105e0
    • Baseline: 1fc3b9
  • Julia commits:
    • Target: d63ade
    • Baseline: d63ade
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 0.94 (5%) ✅ 1.00 (1%)
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 1.09 (5%) ❌ 1.00 (1%)
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 0.89 (5%) ✅ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 0.85 (5%) ✅ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      15398 s          0 s       1020 s      62978 s          0 s
       #2     0 MHz      38639 s          0 s        793 s      40040 s          0 s
       #3     0 MHz      15530 s          0 s       1119 s      62785 s          0 s
       #4     0 MHz      24807 s          0 s       1019 s      53580 s          0 s
  Memory: 15.61526870727539 GB (11977.48828125 MB free)
  Uptime: 7957.92 sec
  Load Avg:  1.11  1.06  1.01
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      22379 s          0 s       1428 s      93688 s          0 s
       #2     0 MHz      58167 s          0 s       1088 s      58336 s          0 s
       #3     0 MHz      22001 s          0 s       1574 s      93962 s          0 s
       #4     0 MHz      33782 s          0 s       1443 s      82289 s          0 s
  Memory: 15.61526870727539 GB (12203.421875 MB free)
  Uptime: 11772.16 sec
  Load Avg:  1.0  1.02  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 19:30
  • Package commit: 5105e0
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 406.131 ms (5%) 1.61 MiB (1%) 12348
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 13.012 ms (5%) 356.97 KiB (1%) 2390
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 23.493 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 826.480 ms (5%) 974.16 KiB (1%) 6742
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.638 ms (5%) 120.84 KiB (1%) 802
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 36.520 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 912.052 s (5%) 113.93 MiB (1%) 793214
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 591.311 μs (5%) 5.57 MiB (1%) 472
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 360.447 ms (5%) 4.18 MiB (1%) 30600
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 18.940 ms (5%) 206.62 KiB (1%) 1280
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 77.931 ms (5%) 614.22 KiB (1%) 4406
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 80.470 ms (5%) 810.78 KiB (1%) 5896
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.907 ms (5%) 92.39 KiB (1%) 854
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.276 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 45.967 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 77.566 ms (5%) 335.41 KiB (1%) 2461
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 19.455 s (5%) 172.358 ms 197.78 MiB (1%) 1466005
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 23.982 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 67.075 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.926 ms (5%) 201.23 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 63.957 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 74.218 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.685 ms (5%) 115.48 KiB (1%) 797
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 16.580 s (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 34.357 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 19.225 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.859 ms (5%) 81.22 KiB (1%) 469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 94.936 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 371.292 ms (5%) 1.82 MiB (1%) 13965
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 12.132 ms (5%) 208.31 KiB (1%) 1465
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 20.249 ms (5%) 55.07 MiB (1%) 95454
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 7.364 ms (5%) 18.40 MiB (1%) 32442
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 6.854 ms (5%) 13.45 MiB (1%) 40737
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 21.901 ms (5%) 50.74 MiB (1%) 133365
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 6.805 ms (5%) 13.98 MiB (1%) 43455
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 18.898 ms (5%) 45.54 MiB (1%) 68305
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 11.309 s (5%) 229.250 ms 2.09 GiB (1%) 6332543
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.230 ms (5%) 5.72 MiB (1%) 11562
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 2.979 ms (5%) 6.24 MiB (1%) 32485
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 10.194 ms (5%) 24.11 MiB (1%) 36025
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 36.209 ms (5%) 91.53 MiB (1%) 87954
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 20.034 ms (5%) 52.23 MiB (1%) 52711
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.570 ms (5%) 8.86 MiB (1%) 34292
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 615.148 ms (5%) 23.954 ms 319.40 MiB (1%) 1666426
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 119.834 ms (5%) 56.26 MiB (1%) 707327
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 147.678 ms (5%) 66.84 MiB (1%) 964733
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 715.231 ms (5%) 52.117 ms 276.38 MiB (1%) 4112059
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 149.600 ms (5%) 67.86 MiB (1%) 836251
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 129.232 ms (5%) 70.10 MiB (1%) 844592
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 518.861 s (5%) 7.358 s 36.60 GiB (1%) 109439362
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 12.763 ms (5%) 10.91 MiB (1%) 110186
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 96.835 ms (5%) 44.83 MiB (1%) 521452
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 54.467 ms (5%) 32.64 MiB (1%) 380845
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 238.305 ms (5%) 143.18 MiB (1%) 1008411
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 178.689 ms (5%) 99.92 MiB (1%) 873713
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 154.586 ms (5%) 150.36 MiB (1%) 475498

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      15398 s          0 s       1020 s      62978 s          0 s
       #2     0 MHz      38639 s          0 s        793 s      40040 s          0 s
       #3     0 MHz      15530 s          0 s       1119 s      62785 s          0 s
       #4     0 MHz      24807 s          0 s       1019 s      53580 s          0 s
  Memory: 15.61526870727539 GB (11977.48828125 MB free)
  Uptime: 7957.92 sec
  Load Avg:  1.11  1.06  1.01
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 20:34
  • Package commit: 1fc3b9
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 408.119 ms (5%) 1.61 MiB (1%) 12348
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 13.851 ms (5%) 356.97 KiB (1%) 2390
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 23.502 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 809.538 ms (5%) 974.16 KiB (1%) 6742
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.757 ms (5%) 120.84 KiB (1%) 802
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 37.485 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 910.016 s (5%) 75.408 ms 113.93 MiB (1%) 793214
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 543.712 μs (5%) 5.57 MiB (1%) 472
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 365.282 ms (5%) 4.18 MiB (1%) 30600
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 19.081 ms (5%) 206.62 KiB (1%) 1280
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 78.642 ms (5%) 614.22 KiB (1%) 4406
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 78.397 ms (5%) 810.78 KiB (1%) 5896
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.693 ms (5%) 92.39 KiB (1%) 854
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.606 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 46.064 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 74.859 ms (5%) 335.41 KiB (1%) 2461
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 19.510 s (5%) 160.045 ms 197.78 MiB (1%) 1466005
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.142 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 67.586 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 9.054 ms (5%) 201.23 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 64.445 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 75.123 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.726 ms (5%) 115.48 KiB (1%) 797
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 16.631 s (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 34.581 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 19.196 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.929 ms (5%) 81.22 KiB (1%) 469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 106.547 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 366.865 ms (5%) 1.82 MiB (1%) 13965
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 12.134 ms (5%) 208.31 KiB (1%) 1465
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 20.646 ms (5%) 55.07 MiB (1%) 95454
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 7.398 ms (5%) 18.40 MiB (1%) 32442
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 6.865 ms (5%) 13.45 MiB (1%) 40737
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 22.168 ms (5%) 50.74 MiB (1%) 133360
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 6.869 ms (5%) 13.98 MiB (1%) 43455
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 19.303 ms (5%) 45.54 MiB (1%) 68305
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 13.286 s (5%) 290.600 ms 2.09 GiB (1%) 6332543
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.256 ms (5%) 5.72 MiB (1%) 11552
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 2.973 ms (5%) 6.24 MiB (1%) 32485
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 10.421 ms (5%) 24.11 MiB (1%) 36025
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 36.631 ms (5%) 91.53 MiB (1%) 87954
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 20.419 ms (5%) 52.23 MiB (1%) 52699
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.589 ms (5%) 8.86 MiB (1%) 34292
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 635.294 ms (5%) 22.964 ms 319.40 MiB (1%) 1666422
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 122.174 ms (5%) 56.26 MiB (1%) 707324
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 149.486 ms (5%) 66.84 MiB (1%) 964730
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 740.883 ms (5%) 55.299 ms 276.38 MiB (1%) 4112051
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 149.915 ms (5%) 67.80 MiB (1%) 835252
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 129.798 ms (5%) 70.10 MiB (1%) 844589
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 535.703 s (5%) 6.602 s 36.60 GiB (1%) 109439359
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 13.038 ms (5%) 10.91 MiB (1%) 110173
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 98.694 ms (5%) 44.83 MiB (1%) 521449
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 55.080 ms (5%) 32.55 MiB (1%) 379342
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 246.897 ms (5%) 143.18 MiB (1%) 1008407
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 182.359 ms (5%) 99.92 MiB (1%) 873697
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 160.222 ms (5%) 150.36 MiB (1%) 475495

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      22379 s          0 s       1428 s      93688 s          0 s
       #2     0 MHz      58167 s          0 s       1088 s      58336 s          0 s
       #3     0 MHz      22001 s          0 s       1574 s      93962 s          0 s
       #4     0 MHz      33782 s          0 s       1443 s      82289 s          0 s
  Memory: 15.61526870727539 GB (12203.421875 MB free)
  Uptime: 11772.16 sec
  Load Avg:  1.0  1.02  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.85
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@github-actions
Copy link
Contributor

github-actions bot commented Feb 1, 2025

Benchmark result

Judge result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmarks:
    • Target: 1 Feb 2025 - 19:33
    • Baseline: 1 Feb 2025 - 20:37
  • Package commits:
    • Target: 5105e0
    • Baseline: 1fc3b9
  • Julia commits:
    • Target: d63ade
    • Baseline: d63ade
  • Julia command flags:
    • Target: None
    • Baseline: None
  • Environment variables:
    • Target: None
    • Baseline: None

Results

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less
than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).

ID time ratio memory ratio
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 1.15 (5%) ❌ 1.00 (1%)
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 1.09 (5%) ❌ 1.00 (1%)
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 1.06 (5%) ❌ 1.00 (1%)
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 0.94 (5%) ✅ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 1.06 (5%) ❌ 1.00 (1%)
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 1.15 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Target

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      18700 s          0 s       1016 s      61558 s          0 s
       #2     0 MHz      42279 s          0 s        820 s      38216 s          0 s
       #3     0 MHz      16346 s          0 s       1283 s      63655 s          0 s
       #4     0 MHz      18796 s          0 s       1130 s      61364 s          0 s
  Memory: 15.61526870727539 GB (11898.05078125 MB free)
  Uptime: 8144.47 sec
  Load Avg:  1.02  1.03  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      26596 s          0 s       1384 s      91143 s          0 s
       #2     0 MHz      58699 s          0 s       1167 s      59314 s          0 s
       #3     0 MHz      22900 s          0 s       1766 s      94478 s          0 s
       #4     0 MHz      29699 s          0 s       1553 s      87900 s          0 s
  Memory: 15.61526870727539 GB (12781.3125 MB free)
  Uptime: 11933.9 sec
  Load Avg:  1.02  1.01  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Target result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 19:33
  • Package commit: 5105e0
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 473.209 ms (5%) 1.61 MiB (1%) 12348
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 13.161 ms (5%) 356.97 KiB (1%) 2390
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 23.452 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 886.270 ms (5%) 974.16 KiB (1%) 6742
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 14.219 ms (5%) 120.84 KiB (1%) 802
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 36.766 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 912.946 s (5%) 113.93 MiB (1%) 793214
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 584.697 μs (5%) 5.57 MiB (1%) 472
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 372.689 ms (5%) 4.18 MiB (1%) 30600
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 18.926 ms (5%) 206.62 KiB (1%) 1280
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 74.146 ms (5%) 614.22 KiB (1%) 4406
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 78.633 ms (5%) 810.78 KiB (1%) 5896
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.739 ms (5%) 92.39 KiB (1%) 854
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 47.984 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 46.363 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 74.399 ms (5%) 335.41 KiB (1%) 2461
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 19.223 s (5%) 188.179 ms 197.78 MiB (1%) 1466005
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 24.023 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 69.055 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.851 ms (5%) 201.23 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 64.044 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 76.396 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.678 ms (5%) 115.48 KiB (1%) 797
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 16.570 s (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 34.650 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 19.091 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.841 ms (5%) 81.22 KiB (1%) 469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 95.038 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 366.773 ms (5%) 1.82 MiB (1%) 13965
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 12.064 ms (5%) 208.31 KiB (1%) 1465
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 20.652 ms (5%) 55.07 MiB (1%) 95454
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 7.555 ms (5%) 18.40 MiB (1%) 32442
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 6.831 ms (5%) 13.45 MiB (1%) 40737
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 22.267 ms (5%) 50.74 MiB (1%) 133360
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 6.979 ms (5%) 13.98 MiB (1%) 43455
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 19.022 ms (5%) 45.54 MiB (1%) 68305
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 11.250 s (5%) 686.712 ms 2.09 GiB (1%) 6332543
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.252 ms (5%) 5.72 MiB (1%) 11552
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 2.953 ms (5%) 6.24 MiB (1%) 32485
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 10.250 ms (5%) 24.11 MiB (1%) 36025
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 36.670 ms (5%) 91.53 MiB (1%) 87954
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 20.014 ms (5%) 52.23 MiB (1%) 52711
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.566 ms (5%) 8.86 MiB (1%) 34292
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 640.569 ms (5%) 26.117 ms 319.40 MiB (1%) 1666426
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 120.879 ms (5%) 56.26 MiB (1%) 707327
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 148.841 ms (5%) 66.84 MiB (1%) 964733
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 749.331 ms (5%) 54.464 ms 276.38 MiB (1%) 4112054
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 153.228 ms (5%) 67.86 MiB (1%) 836251
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 132.749 ms (5%) 70.10 MiB (1%) 844592
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 596.306 s (5%) 8.724 s 36.60 GiB (1%) 109439362
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 12.776 ms (5%) 10.91 MiB (1%) 110176
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 97.676 ms (5%) 44.83 MiB (1%) 521452
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 55.480 ms (5%) 32.64 MiB (1%) 380845
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 256.461 ms (5%) 143.18 MiB (1%) 1008411
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 180.315 ms (5%) 99.92 MiB (1%) 873713
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 161.503 ms (5%) 150.36 MiB (1%) 475498

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      18700 s          0 s       1016 s      61558 s          0 s
       #2     0 MHz      42279 s          0 s        820 s      38216 s          0 s
       #3     0 MHz      16346 s          0 s       1283 s      63655 s          0 s
       #4     0 MHz      18796 s          0 s       1130 s      61364 s          0 s
  Memory: 15.61526870727539 GB (11898.05078125 MB free)
  Uptime: 8144.47 sec
  Load Avg:  1.02  1.03  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Baseline result

Benchmark Report for /home/runner/work/ADNLPModels.jl/ADNLPModels.jl

Job Properties

  • Time of benchmark: 1 Feb 2025 - 20:37
  • Package commit: 1fc3b9
  • Julia commit: d63ade
  • Julia command flags: None
  • Environment variables: None

Results

Below is a table of this job's results, obtained by running the benchmarks.
The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to
index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true"
time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
An empty cell means that the value was zero.

ID time GC time memory allocations
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "camshape"] 410.817 ms (5%) 1.61 MiB (1%) 12348
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "catenary"] 13.141 ms (5%) 356.97 KiB (1%) 2390
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "chain"] 23.436 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "channel"] 812.649 ms (5%) 974.16 KiB (1%) 6742
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "clnlbeam"] 13.833 ms (5%) 120.84 KiB (1%) 802
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "controlinvestment"] 36.323 ms (5%) 275.28 KiB (1%) 1932
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "elec"] 911.071 s (5%) 85.128 ms 113.93 MiB (1%) 793214
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "hovercraft1d"] 550.392 μs (5%) 5.57 MiB (1%) 472
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "marine"] 359.051 ms (5%) 4.18 MiB (1%) 30600
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon1"] 19.094 ms (5%) 206.62 KiB (1%) 1280
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "polygon3"] 75.233 ms (5%) 614.22 KiB (1%) 4406
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "robotarm"] 79.015 ms (5%) 810.78 KiB (1%) 5896
["hess_coord", "optimized", "Float64", "scalable_cons", "sparse", "structural"] 13.863 ms (5%) 92.39 KiB (1%) 854
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglina"] 48.482 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "arglinb"] 46.208 ms (5%) 328.33 KiB (1%) 2465
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "bdqrtic"] 74.651 ms (5%) 335.41 KiB (1%) 2461
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brownal"] 19.321 s (5%) 166.827 ms 197.78 MiB (1%) 1466005
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "broyden3d"] 23.880 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "brybnd"] 67.080 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "dixon3dq"] 8.746 ms (5%) 201.23 KiB (1%) 1469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "errinros_mod"] 64.325 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "freuroth"] 74.575 ms (5%) 336.17 KiB (1%) 2467
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "hovercraft1d"] 1.790 ms (5%) 115.48 KiB (1%) 797
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "integreq"] 16.593 s (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "morebv"] 34.608 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "penalty1"] 19.219 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "power"] 2.830 ms (5%) 81.22 KiB (1%) 469
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "sbrybnd"] 95.044 ms (5%) 209.08 KiB (1%) 1471
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "spmsrtls"] 369.614 ms (5%) 1.82 MiB (1%) 13965
["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse", "tquartic"] 12.256 ms (5%) 208.31 KiB (1%) 1465
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "camshape"] 20.520 ms (5%) 55.07 MiB (1%) 95454
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "catenary"] 7.343 ms (5%) 18.40 MiB (1%) 32442
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "chain"] 6.876 ms (5%) 13.45 MiB (1%) 40737
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "channel"] 22.153 ms (5%) 50.74 MiB (1%) 133360
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "clnlbeam"] 6.815 ms (5%) 13.98 MiB (1%) 43455
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "controlinvestment"] 19.100 ms (5%) 45.54 MiB (1%) 68305
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "elec"] 10.652 s (5%) 228.129 ms 2.09 GiB (1%) 6332543
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "hovercraft1d"] 2.239 ms (5%) 5.72 MiB (1%) 11552
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "marine"] 2.949 ms (5%) 6.24 MiB (1%) 32485
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon1"] 10.183 ms (5%) 24.11 MiB (1%) 36025
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "polygon3"] 36.282 ms (5%) 91.53 MiB (1%) 87954
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "robotarm"] 20.113 ms (5%) 52.23 MiB (1%) 52711
["hessian_backend", "optimized", "Float64", "scalable", "sparse", "structural"] 1.572 ms (5%) 8.86 MiB (1%) 34292
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "camshape"] 642.402 ms (5%) 30.111 ms 319.40 MiB (1%) 1666422
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "catenary"] 123.210 ms (5%) 56.26 MiB (1%) 707324
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "chain"] 150.563 ms (5%) 66.84 MiB (1%) 964730
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "channel"] 735.935 ms (5%) 57.856 ms 276.38 MiB (1%) 4112051
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "clnlbeam"] 152.221 ms (5%) 67.80 MiB (1%) 835252
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "controlinvestment"] 133.491 ms (5%) 70.10 MiB (1%) 844589
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "elec"] 520.673 s (5%) 7.398 s 36.60 GiB (1%) 109439359
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "hovercraft1d"] 13.235 ms (5%) 10.91 MiB (1%) 110173
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "marine"] 97.542 ms (5%) 44.83 MiB (1%) 521449
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon1"] 55.686 ms (5%) 32.55 MiB (1%) 379342
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "polygon3"] 245.677 ms (5%) 143.18 MiB (1%) 1008407
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "robotarm"] 179.991 ms (5%) 99.92 MiB (1%) 873709
["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics", "structural"] 167.715 ms (5%) 150.36 MiB (1%) 475495

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["hess_coord", "optimized", "Float64", "scalable_cons", "sparse"]
  • ["hess_coord_residual", "optimized", "Float64", "scalable_nls", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse"]
  • ["hessian_backend", "optimized", "Float64", "scalable", "sparse_symbolics"]

Julia versioninfo

Julia Version 1.11.3
Commit d63adeda50d (2025-01-21 19:42 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 24.04.1 LTS
  uname: Linux 6.8.0-1020-azure #23-Ubuntu SMP Mon Dec  9 16:58:58 UTC 2024 x86_64 x86_64
  CPU: AMD EPYC 7763 64-Core Processor: 
              speed         user         nice          sys         idle          irq
       #1     0 MHz      26596 s          0 s       1384 s      91143 s          0 s
       #2     0 MHz      58699 s          0 s       1167 s      59314 s          0 s
       #3     0 MHz      22900 s          0 s       1766 s      94478 s          0 s
       #4     0 MHz      29699 s          0 s       1553 s      87900 s          0 s
  Memory: 15.61526870727539 GB (12781.3125 MB free)
  Uptime: 11933.9 sec
  Load Avg:  1.02  1.01  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Runtime information

Runtime Info
BLAS #threads 2
BLAS.vendor() lbt
Sys.CPU_THREADS 4

lscpu output:

Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               4
On-line CPU(s) list:                  0-3
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7763 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   2
Core(s) per socket:                   2
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4890.87
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves user_shstk clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm
Virtualization:                       AMD-V
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            64 KiB (2 instances)
L1i cache:                            64 KiB (2 instances)
L2 cache:                             1 MiB (2 instances)
L3 cache:                             32 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-3
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Cpu Property Value
Brand AMD EPYC 7763 64-Core Processor
Vendor :AMD
Architecture :Unknown
Model Family: 0xaf, Model: 0x01, Stepping: 0x01, Type: 0x00
Cores 16 physical cores, 16 logical cores (on executing CPU)
No Hyperthreading hardware capability detected
Clock Frequencies Not supported by CPU
Data Cache Level 1:3 : (32, 512, 32768) kbytes
64 byte cache line size
Address Size 48 bits virtual, 48 bits physical
SIMD 256 bit = 32 byte max. SIMD vector size
Time Stamp Counter TSC is accessible via rdtsc
TSC runs at constant rate (invariant from clock frequency)
Perf. Monitoring Performance Monitoring Counters (PMC) are not supported
Hypervisor Yes, Microsoft

@amontoison amontoison merged commit 0df1d42 into main Feb 1, 2025
40 of 41 checks passed
@amontoison amontoison deleted the show_time_sparse branch February 1, 2025 21:39
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

Pass the argument show_time to sparse AD backends

3 participants