@@ -15,27 +15,27 @@ function kron(A::AbstractLinearOperator, B::AbstractLinearOperator)
15
15
S = promote_type (T, eltype (x))
16
16
X = reshape (convert (Vector{S}, x), q, n)
17
17
if β == zero (T2)
18
- res .= Matrix (B * X * transpose (A))[:]
18
+ res .= α .* Matrix (B * X * transpose (A))[:]
19
19
else
20
- res .= Matrix (B * X * transpose (A))[:] .+ β .* res
20
+ res .= α .* Matrix (B * X * transpose (A))[:] .+ β .* res
21
21
end
22
22
end
23
23
function tprod! (res, x, α, β:: T2 ) where {T2}
24
24
S = promote_type (T, eltype (x))
25
25
X = reshape (convert (Vector{S}, x), p, m)
26
26
if β == zero (T2)
27
- res .= Matrix (transpose (B) * X * A)[:]
27
+ res .= α .* Matrix (transpose (B) * X * A)[:]
28
28
else
29
- res .= Matrix (transpose (B) * X * A)[:] .+ β .* res
29
+ res .= α .* Matrix (transpose (B) * X * A)[:] .+ β .* res
30
30
end
31
31
end
32
32
function ctprod! (res, x, α, β:: T2 ) where {T2}
33
33
S = promote_type (T, eltype (x))
34
34
X = reshape (convert (Vector{S}, x), p, m)
35
35
if β == zero (T2)
36
- res .= Matrix (B' * X * conj (A))[:]
36
+ res .= α .* Matrix (B' * X * conj (A))[:]
37
37
else
38
- res .= Matrix (B' * X * conj (A))[:] .+ β .* res
38
+ res .= α .* Matrix (B' * X * conj (A))[:] .+ β .* res
39
39
end
40
40
end
41
41
symm = issymmetric (A) && issymmetric (B)
0 commit comments