Skip to content

Commit ca5113c

Browse files
paper: apply suggestions from D1Lab
1 parent 25fac28 commit ca5113c

File tree

2 files changed

+11
-11
lines changed

2 files changed

+11
-11
lines changed

paper/examples/Benchmark.tex

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
\begin{tabular}{lcrrrrr}
22
\hline
33
\textbf{Method} & \textbf{Status} & \textbf{$t$($s$)} & \textbf{$\#f$} & \textbf{$\#\nabla f$} & \textbf{$\#prox$} & \textbf{Objective} \\\hline
4-
TR (LSR1, SVM) & first\_order & 3.9349 & 347 & 291 & 4037 & 179.837 \\
5-
R2N (LSR1, SVM) & first\_order & 1.9511 & 185 & 101 & 27932 & 192.493 \\
6-
LM (SVM) & first\_order & 19.7826 & 6 & 2876 & 1001 & 201.186 \\
7-
LMTR (SVM) & first\_order & 12.4967 & 11 & 1614 & 432 & 188.274 \\
4+
TR (LSR1) & first\_order & 3.9349 & 347 & 291 & 4037 & 179.837 \\
5+
R2N (LSR1) & first\_order & 1.9511 & 185 & 101 & 27932 & 192.493 \\
6+
LM & first\_order & 19.7826 & 6 & 2876 & 1001 & 201.186 \\
7+
LMTR & first\_order & 12.4967 & 11 & 1614 & 432 & 188.274 \\
88
\end{tabular}

paper/paper.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Currently, the following solvers are implemented:
4444

4545
- **Trust-region solvers TR and TRDH** [@aravkin-baraldi-orban-2022;@leconte-orban-2023]
4646
- **Quadratic regularization solvers R2, R2DH and R2N** [@diouane-habiboullah-orban-2024;@aravkin-baraldi-orban-2022]
47-
- **Levenberg-Marquardt solvers LM and LMTR** [@aravkin-baraldi-orban-2024] used when $f$ is a least-squares residual
47+
- **Levenberg-Marquardt solvers LM and LMTR** [@aravkin-baraldi-orban-2024].
4848
- **Augmented Lagrangian solver AL** [@demarchi-jia-kanzow-mehlitz-2023].
4949

5050
All solvers rely on first derivatives of $f$ and $c$, and optionally on their second derivatives in the form of Hessian-vector products.
@@ -134,15 +134,15 @@ solve!(solver, reg_nlp, stats; atol=1e-5, rtol=1e-5, verbose=1, sub_kwargs=(max_
134134

135135
## Numerical results
136136

137-
We compare **TR**, **R2N**, **LM** and **LMTR** from our library.
137+
We compare **TR**, **R2N**, **LM** and **LMTR** from our library on the SVM problem.
138138

139-
The table reports the convergence status of each solver, the number of evaluations of $f$, the number of evaluations of $\nabla f$, the number of proximal operator evaluations, the elapsed time in seconds and the final objective value.
139+
The table reports the convergence status of each solver, the number of evaluations of $f$, the number of evaluations of $\nabla f$, the number of proximal operator evaluations, the elapsed time and the final objective value.
140140
On the SVM and NNMF problems, we use limited-memory SR1 and BFGS Hessian approximations, respectively.
141141
The subproblem solver is **R2**.
142142

143143
\input{examples/Benchmark.tex}
144144

145-
- Note that for the **LM** and **LMTR** solvers, gradient evaluations count $\#\nabla f$ equals the number of Jacobian–vector and adjoint-Jacobian–vector products.
145+
Note that for the **LM** and **LMTR** solvers, gradient evaluations count $\#\nabla f$ equals the number of Jacobian–vector and adjoint-Jacobian–vector products.
146146

147147
All methods successfully reduced the optimality measure below the specified tolerance of $10^{-4}$, and thus converged to an approximate first-order stationary point.
148148
Note that the final objective values differ due to the nonconvexity of the problem.
@@ -155,8 +155,8 @@ Ongoing research aims to reduce the number of proximal evaluations.
155155

156156
# Acknowledgements
157157

158-
The authors would like to thank Alberto De Marchi for his implementation of the Augmented Lagrangian solver.
159-
Mohamed Laghdaf Habiboullah is supported by an excellence FRQNT grant.
160-
Youssef Diouane, Maxence Gollier and Dominique Orban are partially supported by an NSERC Discovery Grant.
158+
The authors would like to thank A. De Marchi for the Augmented Lagrangian solver.
159+
M. L. Habiboullah is supported by an excellence FRQNT grant.
160+
Y. Diouane, M. Gollier and D. Orban are partially supported by an NSERC Discovery Grant.
161161

162162
# References

0 commit comments

Comments
 (0)