|
42 | 42 | @test_logs (:warn, r"The frequency of the signal") SpectralRepresentation(sd, t, :ShnzkNySR) |
43 | 43 |
|
44 | 44 | @testset "Reliability" begin |
45 | | - ω = collect(range(0, 150, 100)) |
| 45 | + |
| 46 | + ω = collect(range(0, 50, 100)) |
46 | 47 |
|
47 | 48 | cp = CloughPenzien(ω, 0.1, 0.8π, 0.6, 8π, 0.6) |
48 | 49 |
|
49 | | - gm = SpectralRepresentation(cp, collect(range(0, 10, 100)), :gm) |
| 50 | + gm = SpectralRepresentation(cp, collect(range(0, 10, 200)), :gm) |
50 | 51 | gm_model = StochasticProcessModel(gm) |
51 | 52 |
|
52 | | - capacity = Parameter(65, :cap) |
| 53 | + capacity = Parameter(25, :cap) |
53 | 54 |
|
54 | 55 | function limitstate(df) |
55 | 56 | return df.cap - map(sum, df.gm) |
|
62 | 63 |
|
63 | 64 | pf_mc, _, _ = probability_of_failure(models, limitstate, inputs, mc) |
64 | 65 |
|
65 | | - # Reference solution obtained with 10^6 samples: 0.004217 |
66 | | - @test 0.0028 < pf_mc < 0.0069 # 99 percentiles obtained from 5000 independent runs with 10^4 samples |
| 66 | + # Reference solution obtained with 10^6 samples: 0.003529 |
| 67 | + @test 0.001 < pf_mc < 0.0064 # 99 percentiles obtained from 5000 independent runs with 10^4 samples |
67 | 68 |
|
68 | 69 | # We use subset to confirm that the mappings to sns are done correctly |
69 | 70 |
|
70 | 71 | ss = SubSetInfinityAdaptive(2000, 0.1, 20, 10, 0.6, 1) |
71 | 72 |
|
72 | 73 | pf_ss, _, _ = probability_of_failure(models, limitstate, inputs, ss) |
73 | 74 |
|
74 | | - @test 0.0028 < pf_ss < 0.0069 |
| 75 | + @test 0.001 < pf_ss < 0.0064 |
75 | 76 | end |
76 | 77 | end |
0 commit comments