@@ -34,243 +34,245 @@ import kotlin.reflect.typeOf
34
34
35
35
// region DataColumn
36
36
37
- public fun DataColumn<Number?>.mean (skipNA : Boolean = skipNA_default ): Double =
38
- Aggregators .mean(skipNA ).aggregateSingleColumn(this )
37
+ public fun DataColumn<Number?>.mean (skipNaN : Boolean = skipNaN_default ): Double =
38
+ Aggregators .mean(skipNaN ).aggregateSingleColumn(this )
39
39
40
40
public inline fun <T , reified R : Number > DataColumn<T>.meanOf (
41
- skipNA : Boolean = skipNA_default ,
41
+ skipNaN : Boolean = skipNaN_default ,
42
42
crossinline expression : (T ) -> R ? ,
43
- ): Double = Aggregators .mean(skipNA ).aggregateOf(this , expression)
43
+ ): Double = Aggregators .mean(skipNaN ).aggregateOf(this , expression)
44
44
45
45
// endregion
46
46
47
47
// region DataRow
48
48
49
- public fun AnyRow.rowMean (skipNA : Boolean = skipNA_default ): Double =
50
- Aggregators .mean(skipNA ).aggregateOfRow(this , primitiveOrMixedNumberColumns())
49
+ public fun AnyRow.rowMean (skipNaN : Boolean = skipNaN_default ): Double =
50
+ Aggregators .mean(skipNaN ).aggregateOfRow(this , primitiveOrMixedNumberColumns())
51
51
52
- public inline fun <reified T : Number ? > AnyRow.rowMeanOf (skipNA : Boolean = skipNA_default ): Double {
52
+ public inline fun <reified T : Number ? > AnyRow.rowMeanOf (skipNaN : Boolean = skipNaN_default ): Double {
53
53
require(typeOf<T >().isPrimitiveOrMixedNumber()) {
54
54
" Type ${T ::class .simpleName} is not a primitive number type. Mean only supports primitive number types."
55
55
}
56
- return Aggregators .mean(skipNA ).aggregateOfRow(this ) { colsOf<T >() }
56
+ return Aggregators .mean(skipNaN ).aggregateOfRow(this ) { colsOf<T >() }
57
57
}
58
58
59
59
// endregion
60
60
61
61
// region DataFrame
62
62
63
- public fun <T > DataFrame<T>.mean (skipNA : Boolean = skipNA_default ): DataRow <T > =
64
- meanFor(skipNA , primitiveOrMixedNumberColumns())
63
+ public fun <T > DataFrame<T>.mean (skipNaN : Boolean = skipNaN_default ): DataRow <T > =
64
+ meanFor(skipNaN , primitiveOrMixedNumberColumns())
65
65
66
66
public fun <T , C : Number > DataFrame<T>.meanFor (
67
- skipNA : Boolean = skipNA_default ,
67
+ skipNaN : Boolean = skipNaN_default ,
68
68
columns : ColumnsForAggregateSelector <T , C ?>,
69
- ): DataRow <T > = Aggregators .mean(skipNA ).aggregateFor(this , columns)
69
+ ): DataRow <T > = Aggregators .mean(skipNaN ).aggregateFor(this , columns)
70
70
71
- public fun <T > DataFrame<T>.meanFor (vararg columns : String , skipNA : Boolean = skipNA_default ): DataRow <T > =
72
- meanFor(skipNA ) { columns.toNumberColumns() }
71
+ public fun <T > DataFrame<T>.meanFor (vararg columns : String , skipNaN : Boolean = skipNaN_default ): DataRow <T > =
72
+ meanFor(skipNaN ) { columns.toNumberColumns() }
73
73
74
74
@AccessApiOverload
75
75
public fun <T , C : Number > DataFrame<T>.meanFor (
76
76
vararg columns : ColumnReference <C ?>,
77
- skipNA : Boolean = skipNA_default ,
78
- ): DataRow <T > = meanFor(skipNA ) { columns.toColumnSet() }
77
+ skipNaN : Boolean = skipNaN_default ,
78
+ ): DataRow <T > = meanFor(skipNaN ) { columns.toColumnSet() }
79
79
80
80
@AccessApiOverload
81
81
public fun <T , C : Number > DataFrame<T>.meanFor (
82
82
vararg columns : KProperty <C ?>,
83
- skipNA : Boolean = skipNA_default ,
84
- ): DataRow <T > = meanFor(skipNA ) { columns.toColumnSet() }
83
+ skipNaN : Boolean = skipNaN_default ,
84
+ ): DataRow <T > = meanFor(skipNaN ) { columns.toColumnSet() }
85
85
86
86
public fun <T , C : Number > DataFrame<T>.mean (
87
- skipNA : Boolean = skipNA_default ,
87
+ skipNaN : Boolean = skipNaN_default ,
88
88
columns : ColumnsSelector <T , C ?>,
89
- ): Double = Aggregators .mean(skipNA ).aggregateAll(this , columns)
89
+ ): Double = Aggregators .mean(skipNaN ).aggregateAll(this , columns)
90
90
91
- public fun <T > DataFrame<T>.mean (vararg columns : String , skipNA : Boolean = skipNA_default ): Double =
92
- mean(skipNA ) { columns.toNumberColumns() }
91
+ public fun <T > DataFrame<T>.mean (vararg columns : String , skipNaN : Boolean = skipNaN_default ): Double =
92
+ mean(skipNaN ) { columns.toNumberColumns() }
93
93
94
94
@AccessApiOverload
95
95
public fun <T , C : Number > DataFrame<T>.mean (
96
96
vararg columns : ColumnReference <C ?>,
97
- skipNA : Boolean = skipNA_default ,
98
- ): Double = mean(skipNA ) { columns.toColumnSet() }
97
+ skipNaN : Boolean = skipNaN_default ,
98
+ ): Double = mean(skipNaN ) { columns.toColumnSet() }
99
99
100
100
@AccessApiOverload
101
- public fun <T , C : Number > DataFrame<T>.mean (vararg columns : KProperty <C ?>, skipNA : Boolean = skipNA_default): Double =
102
- mean(skipNA) { columns.toColumnSet() }
101
+ public fun <T , C : Number > DataFrame<T>.mean (
102
+ vararg columns : KProperty <C ?>,
103
+ skipNaN : Boolean = skipNaN_default,
104
+ ): Double = mean(skipNaN) { columns.toColumnSet() }
103
105
104
106
public inline fun <T , reified D : Number > DataFrame<T>.meanOf (
105
- skipNA : Boolean = skipNA_default ,
107
+ skipNaN : Boolean = skipNaN_default ,
106
108
crossinline expression : RowExpression <T , D ?>,
107
- ): Double = Aggregators .mean(skipNA ).aggregateOf(this , expression)
109
+ ): Double = Aggregators .mean(skipNaN ).aggregateOf(this , expression)
108
110
109
111
// endregion
110
112
111
113
// region GroupBy
112
114
@Refine
113
115
@Interpretable(" GroupByMean1" )
114
- public fun <T > Grouped<T>.mean (skipNA : Boolean = skipNA_default ): DataFrame <T > =
115
- meanFor(skipNA , primitiveOrMixedNumberColumns())
116
+ public fun <T > Grouped<T>.mean (skipNaN : Boolean = skipNaN_default ): DataFrame <T > =
117
+ meanFor(skipNaN , primitiveOrMixedNumberColumns())
116
118
117
119
@Refine
118
120
@Interpretable(" GroupByMean0" )
119
121
public fun <T , C : Number > Grouped<T>.meanFor (
120
- skipNA : Boolean = skipNA_default ,
122
+ skipNaN : Boolean = skipNaN_default ,
121
123
columns : ColumnsForAggregateSelector <T , C ?>,
122
- ): DataFrame <T > = Aggregators .mean(skipNA ).aggregateFor(this , columns)
124
+ ): DataFrame <T > = Aggregators .mean(skipNaN ).aggregateFor(this , columns)
123
125
124
- public fun <T > Grouped<T>.meanFor (vararg columns : String , skipNA : Boolean = skipNA_default ): DataFrame <T > =
125
- meanFor(skipNA ) { columns.toNumberColumns() }
126
+ public fun <T > Grouped<T>.meanFor (vararg columns : String , skipNaN : Boolean = skipNaN_default ): DataFrame <T > =
127
+ meanFor(skipNaN ) { columns.toNumberColumns() }
126
128
127
129
@AccessApiOverload
128
130
public fun <T , C : Number > Grouped<T>.meanFor (
129
131
vararg columns : ColumnReference <C ?>,
130
- skipNA : Boolean = skipNA_default ,
131
- ): DataFrame <T > = meanFor(skipNA ) { columns.toColumnSet() }
132
+ skipNaN : Boolean = skipNaN_default ,
133
+ ): DataFrame <T > = meanFor(skipNaN ) { columns.toColumnSet() }
132
134
133
135
@AccessApiOverload
134
136
public fun <T , C : Number > Grouped<T>.meanFor (
135
137
vararg columns : KProperty <C ?>,
136
- skipNA : Boolean = skipNA_default ,
137
- ): DataFrame <T > = meanFor(skipNA ) { columns.toColumnSet() }
138
+ skipNaN : Boolean = skipNaN_default ,
139
+ ): DataFrame <T > = meanFor(skipNaN ) { columns.toColumnSet() }
138
140
139
141
@Refine
140
142
@Interpretable(" GroupByMean0" )
141
143
public fun <T , C : Number > Grouped<T>.mean (
142
144
name : String? = null,
143
- skipNA : Boolean = skipNA_default ,
145
+ skipNaN : Boolean = skipNaN_default ,
144
146
columns : ColumnsSelector <T , C ?>,
145
- ): DataFrame <T > = Aggregators .mean(skipNA ).aggregateAll(this , name, columns)
147
+ ): DataFrame <T > = Aggregators .mean(skipNaN ).aggregateAll(this , name, columns)
146
148
147
149
public fun <T > Grouped<T>.mean (
148
150
vararg columns : String ,
149
151
name : String? = null,
150
- skipNA : Boolean = skipNA_default ,
151
- ): DataFrame <T > = mean(name, skipNA ) { columns.toNumberColumns() }
152
+ skipNaN : Boolean = skipNaN_default ,
153
+ ): DataFrame <T > = mean(name, skipNaN ) { columns.toNumberColumns() }
152
154
153
155
@AccessApiOverload
154
156
public fun <T , C : Number > Grouped<T>.mean (
155
157
vararg columns : ColumnReference <C ?>,
156
158
name : String? = null,
157
- skipNA : Boolean = skipNA_default ,
158
- ): DataFrame <T > = mean(name, skipNA ) { columns.toColumnSet() }
159
+ skipNaN : Boolean = skipNaN_default ,
160
+ ): DataFrame <T > = mean(name, skipNaN ) { columns.toColumnSet() }
159
161
160
162
@AccessApiOverload
161
163
public fun <T , C : Number > Grouped<T>.mean (
162
164
vararg columns : KProperty <C ?>,
163
165
name : String? = null,
164
- skipNA : Boolean = skipNA_default ,
165
- ): DataFrame <T > = mean(name, skipNA ) { columns.toColumnSet() }
166
+ skipNaN : Boolean = skipNaN_default ,
167
+ ): DataFrame <T > = mean(name, skipNaN ) { columns.toColumnSet() }
166
168
167
169
@Refine
168
170
@Interpretable(" GroupByMeanOf" )
169
171
public inline fun <T , reified R : Number > Grouped<T>.meanOf (
170
172
name : String? = null,
171
- skipNA : Boolean = skipNA_default ,
173
+ skipNaN : Boolean = skipNaN_default ,
172
174
crossinline expression : RowExpression <T , R ?>,
173
- ): DataFrame <T > = Aggregators .mean(skipNA ).aggregateOf(this , name, expression)
175
+ ): DataFrame <T > = Aggregators .mean(skipNaN ).aggregateOf(this , name, expression)
174
176
175
177
// endregion
176
178
177
179
// region Pivot
178
180
179
- public fun <T > Pivot<T>.mean (skipNA : Boolean = skipNA_default , separate : Boolean = false): DataRow <T > =
180
- meanFor(skipNA , separate, primitiveOrMixedNumberColumns())
181
+ public fun <T > Pivot<T>.mean (skipNaN : Boolean = skipNaN_default , separate : Boolean = false): DataRow <T > =
182
+ meanFor(skipNaN , separate, primitiveOrMixedNumberColumns())
181
183
182
184
public fun <T , C : Number > Pivot<T>.meanFor (
183
- skipNA : Boolean = skipNA_default ,
185
+ skipNaN : Boolean = skipNaN_default ,
184
186
separate : Boolean = false,
185
187
columns : ColumnsForAggregateSelector <T , C ?>,
186
- ): DataRow <T > = delegate { meanFor(skipNA , separate, columns) }
188
+ ): DataRow <T > = delegate { meanFor(skipNaN , separate, columns) }
187
189
188
190
public fun <T > Pivot<T>.meanFor (
189
191
vararg columns : String ,
190
- skipNA : Boolean = skipNA_default ,
192
+ skipNaN : Boolean = skipNaN_default ,
191
193
separate : Boolean = false,
192
- ): DataRow <T > = meanFor(skipNA , separate) { columns.toNumberColumns() }
194
+ ): DataRow <T > = meanFor(skipNaN , separate) { columns.toNumberColumns() }
193
195
194
196
@AccessApiOverload
195
197
public fun <T , C : Number > Pivot<T>.meanFor (
196
198
vararg columns : ColumnReference <C ?>,
197
- skipNA : Boolean = skipNA_default ,
199
+ skipNaN : Boolean = skipNaN_default ,
198
200
separate : Boolean = false,
199
- ): DataRow <T > = meanFor(skipNA , separate) { columns.toColumnSet() }
201
+ ): DataRow <T > = meanFor(skipNaN , separate) { columns.toColumnSet() }
200
202
201
203
@AccessApiOverload
202
204
public fun <T , C : Number > Pivot<T>.meanFor (
203
205
vararg columns : KProperty <C ?>,
204
- skipNA : Boolean = skipNA_default ,
206
+ skipNaN : Boolean = skipNaN_default ,
205
207
separate : Boolean = false,
206
- ): DataRow <T > = meanFor(skipNA , separate) { columns.toColumnSet() }
208
+ ): DataRow <T > = meanFor(skipNaN , separate) { columns.toColumnSet() }
207
209
208
210
public fun <T , R : Number > Pivot<T>.mean (
209
- skipNA : Boolean = skipNA_default ,
211
+ skipNaN : Boolean = skipNaN_default ,
210
212
columns : ColumnsSelector <T , R ?>,
211
- ): DataRow <T > = delegate { mean(skipNA , columns) }
213
+ ): DataRow <T > = delegate { mean(skipNaN , columns) }
212
214
213
215
public inline fun <T , reified R : Number > Pivot<T>.meanOf (
214
- skipNA : Boolean = skipNA_default ,
216
+ skipNaN : Boolean = skipNaN_default ,
215
217
crossinline expression : RowExpression <T , R ?>,
216
- ): DataRow <T > = delegate { meanOf(skipNA , expression) }
218
+ ): DataRow <T > = delegate { meanOf(skipNaN , expression) }
217
219
218
220
// endregion
219
221
220
222
// region PivotGroupBy
221
223
222
- public fun <T > PivotGroupBy<T>.mean (separate : Boolean = false, skipNA : Boolean = skipNA_default ): DataFrame <T > =
223
- meanFor(skipNA , separate, primitiveOrMixedNumberColumns())
224
+ public fun <T > PivotGroupBy<T>.mean (separate : Boolean = false, skipNaN : Boolean = skipNaN_default ): DataFrame <T > =
225
+ meanFor(skipNaN , separate, primitiveOrMixedNumberColumns())
224
226
225
227
public fun <T , C : Number > PivotGroupBy<T>.meanFor (
226
- skipNA : Boolean = skipNA_default ,
228
+ skipNaN : Boolean = skipNaN_default ,
227
229
separate : Boolean = false,
228
230
columns : ColumnsForAggregateSelector <T , C ?>,
229
- ): DataFrame <T > = Aggregators .mean(skipNA ).aggregateFor(this , separate, columns)
231
+ ): DataFrame <T > = Aggregators .mean(skipNaN ).aggregateFor(this , separate, columns)
230
232
231
233
public fun <T > PivotGroupBy<T>.meanFor (
232
234
vararg columns : String ,
233
235
separate : Boolean = false,
234
- skipNA : Boolean = skipNA_default ,
235
- ): DataFrame <T > = meanFor(skipNA , separate) { columns.toNumberColumns() }
236
+ skipNaN : Boolean = skipNaN_default ,
237
+ ): DataFrame <T > = meanFor(skipNaN , separate) { columns.toNumberColumns() }
236
238
237
239
@AccessApiOverload
238
240
public fun <T , C : Number > PivotGroupBy<T>.meanFor (
239
241
vararg columns : ColumnReference <C ?>,
240
242
separate : Boolean = false,
241
- skipNA : Boolean = skipNA_default ,
242
- ): DataFrame <T > = meanFor(skipNA , separate) { columns.toColumnSet() }
243
+ skipNaN : Boolean = skipNaN_default ,
244
+ ): DataFrame <T > = meanFor(skipNaN , separate) { columns.toColumnSet() }
243
245
244
246
@AccessApiOverload
245
247
public fun <T , C : Number > PivotGroupBy<T>.meanFor (
246
248
vararg columns : KProperty <C ?>,
247
249
separate : Boolean = false,
248
- skipNA : Boolean = skipNA_default ,
249
- ): DataFrame <T > = meanFor(skipNA , separate) { columns.toColumnSet() }
250
+ skipNaN : Boolean = skipNaN_default ,
251
+ ): DataFrame <T > = meanFor(skipNaN , separate) { columns.toColumnSet() }
250
252
251
253
public fun <T , R : Number > PivotGroupBy<T>.mean (
252
- skipNA : Boolean = skipNA_default ,
254
+ skipNaN : Boolean = skipNaN_default ,
253
255
columns : ColumnsSelector <T , R ?>,
254
- ): DataFrame <T > = Aggregators .mean(skipNA ).aggregateAll(this , columns)
256
+ ): DataFrame <T > = Aggregators .mean(skipNaN ).aggregateAll(this , columns)
255
257
256
- public fun <T > PivotGroupBy<T>.mean (vararg columns : String , skipNA : Boolean = skipNA_default ): DataFrame <T > =
257
- mean(skipNA ) { columns.toColumnsSetOf() }
258
+ public fun <T > PivotGroupBy<T>.mean (vararg columns : String , skipNaN : Boolean = skipNaN_default ): DataFrame <T > =
259
+ mean(skipNaN ) { columns.toColumnsSetOf() }
258
260
259
261
@AccessApiOverload
260
262
public fun <T , R : Number > PivotGroupBy<T>.mean (
261
263
vararg columns : ColumnReference <R ?>,
262
- skipNA : Boolean = skipNA_default ,
263
- ): DataFrame <T > = mean(skipNA ) { columns.toColumnSet() }
264
+ skipNaN : Boolean = skipNaN_default ,
265
+ ): DataFrame <T > = mean(skipNaN ) { columns.toColumnSet() }
264
266
265
267
@AccessApiOverload
266
268
public fun <T , R : Number > PivotGroupBy<T>.mean (
267
269
vararg columns : KProperty <R ?>,
268
- skipNA : Boolean = skipNA_default ,
269
- ): DataFrame <T > = mean(skipNA ) { columns.toColumnSet() }
270
+ skipNaN : Boolean = skipNaN_default ,
271
+ ): DataFrame <T > = mean(skipNaN ) { columns.toColumnSet() }
270
272
271
273
public inline fun <T , reified R : Number > PivotGroupBy<T>.meanOf (
272
- skipNA : Boolean = skipNA_default ,
274
+ skipNaN : Boolean = skipNaN_default ,
273
275
crossinline expression : RowExpression <T , R ?>,
274
- ): DataFrame <T > = Aggregators .mean(skipNA ).aggregateOf(this , expression)
276
+ ): DataFrame <T > = Aggregators .mean(skipNaN ).aggregateOf(this , expression)
275
277
276
278
// endregion
0 commit comments