Skip to content

Classification task: improve noise generation for target variable #5

@tail-call

Description

@tail-call

Instead of adding a random floating point value, we should replace class $q$ with class $r$ with a specified probability $p$.

Specifically see this in cgtnnlib/training.py:

        for i, (inputs, labels) in enumerate(dataset.data.train_loader):
            if is_classification_task(dataset.learning_task):
                pass
                # XXX
                # labels = add_noise_to_labels_classification(
                #     labels=labels,
                #     generate_sample=noise_generator.next_sample,
                # )
            else:
                labels = add_noise_to_labels_regression(
                    labels=labels,
                    generate_sample=noise_generator.next_sample,
                ).to(torch.float32

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions