Skip to content

Commit a2b9e32

Browse files
author
prithagupta
committed
Issue #1 Spelling mistake in class name ClassficationMIEstimator to ClassificationMIEstimator
1 parent dbb0ad9 commit a2b9e32

File tree

6 files changed

+10
-10
lines changed

6 files changed

+10
-10
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ You can find similar example code snippets in
6060
```python
6161
from sklearn.metrics import accuracy_score
6262
from autoqild.dataset_readers.synthetic_data_generator import SyntheticDatasetGenerator
63-
from autoqild.mi_estimators.mi_estimator_classification import ClassficationMIEstimator
63+
from autoqild.mi_estimators.mi_estimator_classification import ClassificationMIEstimator
6464
from autoqild.utilities._constants import LOG_LOSS_MI_ESTIMATION, MID_POINT_MI_ESTIMATION
6565

6666
# Step 1: Generate a Synthetic Dataset
@@ -83,7 +83,7 @@ X, y = dataset_generator.generate_dataset()
8383
print(f"Generated dataset X shape: {X.shape}, y shape: {y.shape}")
8484

8585
# Step 2: Estimate Mutual Information using ClassficationMIEstimator
86-
mi_estimator = ClassficationMIEstimator(n_classes=n_classes, n_features=n_features, random_state=random_state)
86+
mi_estimator = ClassificationMIEstimator(n_classes=n_classes, n_features=n_features, random_state=random_state)
8787

8888
# Fit the estimator on the synthetic dataset
8989
mi_estimator.fit(X, y)

autoqild/mi_estimators/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ class labels using different modeling techniques.
77

88
from .auto_gluon_estimator import AutoMIGluonEstimator
99
from .gmm_mi_estimator import GMMMIEstimator
10-
from .mi_estimator_classification import ClassficationMIEstimator
10+
from .mi_estimator_classification import ClassificationMIEstimator
1111
from .mine_estimator import MineMIEstimator
1212
from .mine_estimator_mse import MineMIEstimatorMSE
1313
from .pc_softmax_estimator import PCSoftmaxMIEstimator

autoqild/mi_estimators/auto_gluon_estimator.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,11 @@
22
(AutoML) to estimate MI with optimized hyperparameters."""
33

44
from autoqild.automl import AutoGluonClassifier
5-
from autoqild.mi_estimators.mi_estimator_classification import ClassficationMIEstimator
5+
from autoqild.mi_estimators.mi_estimator_classification import ClassificationMIEstimator
66
from autoqild.utilities._constants import LOG_LOSS_MI_ESTIMATION
77

88

9-
class AutoMIGluonEstimator(ClassficationMIEstimator):
9+
class AutoMIGluonEstimator(ClassificationMIEstimator):
1010
"""AutoMIGluonEstimator integrates the AutoGluon framework into the Mutual
1111
Information (MI) estimation process for classification tasks. This class
1212
extends the `ClassficationMIEstimator` by using AutoGluon as the base

autoqild/mi_estimators/mi_estimator_classification.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@
1818
from autoqild.utilities import *
1919

2020

21-
class ClassficationMIEstimator(MIEstimatorBase):
21+
class ClassificationMIEstimator(MIEstimatorBase):
2222
"""Class to estimate Mutual Information (MI) using a classification model.
2323
2424
This class leverages a classification model, such as `RandomForestClassifier`, to estimate the Mutual Information
@@ -85,7 +85,7 @@ def __init__(
8585
):
8686
super().__init__(n_classes, n_features, random_state)
8787
self.random_state = check_random_state(random_state)
88-
self.logger = logging.getLogger(ClassficationMIEstimator.__name__)
88+
self.logger = logging.getLogger(ClassificationMIEstimator.__name__)
8989
self.base_estimator = base_estimator
9090
self.learner_params = learner_params
9191
self.base_learner = self.base_estimator(**self.learner_params)

autoqild/mi_estimators/tab_pfn_estimator.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,11 +2,11 @@
22
datasets with efficient MI estimation."""
33

44
from autoqild.automl import AutoTabPFNClassifier
5-
from autoqild.mi_estimators.mi_estimator_classification import ClassficationMIEstimator
5+
from autoqild.mi_estimators.mi_estimator_classification import ClassificationMIEstimator
66
from autoqild.utilities._constants import LOG_LOSS_MI_ESTIMATION
77

88

9-
class TabPFNMIEstimator(ClassficationMIEstimator):
9+
class TabPFNMIEstimator(ClassificationMIEstimator):
1010
"""TabPFNMIEstimator integrates the TabPFN framework into the Mutual
1111
Information (MI) estimation process for classification tasks.
1212

docs/source/start.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ You can find similar example code snippets in
1616
1717
from sklearn.metrics import accuracy_score
1818
from autoqild.dataset_readers.synthetic_data_generator import SyntheticDatasetGenerator
19-
from autoqild.mi_estimators.mi_estimator_classification import ClassficationMIEstimator
19+
from autoqild.mi_estimators.mi_estimator_classification import ClassificationMIEstimator
2020
from autoqild.utilities.constants import LOG_LOSS_MI_ESTIMATION, MID_POINT_MI_ESTIMATION
2121
2222
# Step 1: Generate a Synthetic Dataset

0 commit comments

Comments
 (0)