-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Fix wrong behavior of DDPStrategy
option with simple GAN training using DDP
#20936
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
samsara-ku
wants to merge
2
commits into
Lightning-AI:master
Choose a base branch
from
samsara-ku:bugfix/gan-ddp-training
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
261 changes: 261 additions & 0 deletions
261
examples/pytorch/domain_templates/generative_adversarial_net_ddp.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
# Copyright The Lightning AI team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""To run this template just do: python generative_adversarial_net.py. | ||
|
||
After a few epochs, launch TensorBoard to see the images being generated at every batch: | ||
|
||
tensorboard --logdir default | ||
|
||
""" | ||
|
||
import math | ||
|
||
# ! TESTING | ||
import os | ||
import sys | ||
from argparse import ArgumentParser, Namespace | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
sys.path.append(os.path.join(os.getcwd(), "src")) | ||
# ! TESTING | ||
|
||
from lightning.pytorch import cli_lightning_logo | ||
from lightning.pytorch.core import LightningModule | ||
from lightning.pytorch.demos.mnist_datamodule import MNISTDataModule | ||
from lightning.pytorch.strategies.ddp import MultiModelDDPStrategy | ||
from lightning.pytorch.trainer import Trainer | ||
from lightning.pytorch.utilities.imports import _TORCHVISION_AVAILABLE | ||
|
||
if _TORCHVISION_AVAILABLE: | ||
import torchvision | ||
|
||
|
||
class Generator(nn.Module): | ||
""" | ||
>>> Generator(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE | ||
Generator( | ||
(model): Sequential(...) | ||
) | ||
""" | ||
|
||
def __init__(self, latent_dim: int = 100, img_shape: tuple = (1, 28, 28)): | ||
super().__init__() | ||
self.img_shape = img_shape | ||
|
||
def block(in_feat, out_feat, normalize=True): | ||
layers = [nn.Linear(in_feat, out_feat)] | ||
if normalize: | ||
layers.append(nn.BatchNorm1d(out_feat, 0.8)) | ||
layers.append(nn.LeakyReLU(0.2, inplace=True)) | ||
return layers | ||
|
||
self.model = nn.Sequential( | ||
*block(latent_dim, 128, normalize=False), | ||
*block(128, 256), | ||
*block(256, 512), | ||
*block(512, 1024), | ||
nn.Linear(1024, int(math.prod(img_shape))), | ||
nn.Tanh(), | ||
) | ||
|
||
def forward(self, z): | ||
img = self.model(z) | ||
return img.view(img.size(0), *self.img_shape) | ||
|
||
|
||
class Discriminator(nn.Module): | ||
""" | ||
>>> Discriminator(img_shape=(1, 28, 28)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE | ||
Discriminator( | ||
(model): Sequential(...) | ||
) | ||
""" | ||
|
||
def __init__(self, img_shape): | ||
super().__init__() | ||
|
||
self.model = nn.Sequential( | ||
nn.Linear(int(math.prod(img_shape)), 512), | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Linear(512, 256), | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Linear(256, 1), | ||
) | ||
|
||
def forward(self, img): | ||
img_flat = img.view(img.size(0), -1) | ||
return self.model(img_flat) | ||
|
||
|
||
class GAN(LightningModule): | ||
""" | ||
>>> GAN(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE | ||
GAN( | ||
(generator): Generator( | ||
(model): Sequential(...) | ||
) | ||
(discriminator): Discriminator( | ||
(model): Sequential(...) | ||
) | ||
) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
img_shape: tuple = (1, 28, 28), | ||
lr: float = 0.0002, | ||
b1: float = 0.5, | ||
b2: float = 0.999, | ||
latent_dim: int = 100, | ||
): | ||
super().__init__() | ||
self.save_hyperparameters() | ||
self.automatic_optimization = False | ||
|
||
# networks | ||
self.generator = Generator(latent_dim=self.hparams.latent_dim, img_shape=img_shape) | ||
self.discriminator = Discriminator(img_shape=img_shape) | ||
|
||
self.validation_z = torch.randn(8, self.hparams.latent_dim) | ||
|
||
self.example_input_array = torch.zeros(2, self.hparams.latent_dim) | ||
|
||
# ! TESTING | ||
self.save_path = "pl_test_multi_gpu" | ||
os.makedirs(self.save_path, exist_ok=True) | ||
|
||
def forward(self, z): | ||
return self.generator(z) | ||
|
||
@staticmethod | ||
def adversarial_loss(y_hat, y): | ||
return F.binary_cross_entropy_with_logits(y_hat, y) | ||
|
||
def training_step(self, batch): | ||
imgs, _ = batch | ||
|
||
opt_g, opt_d = self.optimizers() | ||
|
||
# sample noise | ||
z = torch.randn(imgs.shape[0], self.hparams.latent_dim) | ||
z = z.type_as(imgs) | ||
|
||
# Train generator | ||
# ground truth result (ie: all fake) | ||
# put on GPU because we created this tensor inside training_loop | ||
valid = torch.ones(imgs.size(0), 1) | ||
valid = valid.type_as(imgs) | ||
|
||
self.toggle_optimizer(opt_g) | ||
# adversarial loss is binary cross-entropy | ||
g_loss = self.adversarial_loss(self.discriminator(self(z)), valid) | ||
opt_g.zero_grad() | ||
self.manual_backward(g_loss) | ||
opt_g.step() | ||
self.untoggle_optimizer(opt_g) | ||
|
||
# Train discriminator | ||
# Measure discriminator's ability to classify real from generated samples | ||
# how well can it label as real? | ||
valid = torch.ones(imgs.size(0), 1) | ||
valid = valid.type_as(imgs) | ||
|
||
self.toggle_optimizer(opt_d) | ||
real_loss = self.adversarial_loss(self.discriminator(imgs), valid) | ||
|
||
# how well can it label as fake? | ||
fake = torch.zeros(imgs.size(0), 1) | ||
fake = fake.type_as(imgs) | ||
|
||
fake_loss = self.adversarial_loss(self.discriminator(self(z).detach()), fake) | ||
|
||
# discriminator loss is the average of these | ||
d_loss = (real_loss + fake_loss) / 2 | ||
|
||
opt_d.zero_grad() | ||
self.manual_backward(d_loss) | ||
opt_d.step() | ||
self.untoggle_optimizer(opt_d) | ||
|
||
self.log_dict({"d_loss": d_loss, "g_loss": g_loss}) | ||
|
||
def configure_optimizers(self): | ||
lr = self.hparams.lr | ||
b1 = self.hparams.b1 | ||
b2 = self.hparams.b2 | ||
|
||
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2)) | ||
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2)) | ||
return opt_g, opt_d | ||
|
||
# ! TESTING | ||
def on_train_epoch_start(self): | ||
if self.trainer.is_global_zero: | ||
print("GEN: ", self.generator.module.model[0].bias[:10]) | ||
print("DISC: ", self.discriminator.module.model[0].bias[:10]) | ||
|
||
# ! TESTING | ||
def validation_step(self, batch, batch_idx): | ||
pass | ||
|
||
# ! TESTING | ||
@torch.no_grad() | ||
def on_validation_epoch_end(self): | ||
if self.current_epoch % 5: | ||
self.generator.eval(), self.discriminator.eval() | ||
|
||
z = self.validation_z.type_as(self.generator.module.model[0].weight) | ||
sample_imgs = self(z) | ||
|
||
if self.trainer.is_global_zero: | ||
grid = torchvision.utils.make_grid(sample_imgs) | ||
torchvision.utils.save_image(grid, os.path.join(self.save_path, f"epoch_{self.current_epoch}.png")) | ||
|
||
self.generator.train(), self.discriminator.train() | ||
|
||
|
||
def main(args: Namespace) -> None: | ||
model = GAN(lr=args.lr, b1=args.b1, b2=args.b2, latent_dim=args.latent_dim) | ||
|
||
# ! `MultiModelDDPStrategy` is critical for multi-gpu training | ||
# ! Otherwise, it will not work with multiple models. | ||
# ! There are two ways to run training codes with previous `DDPStrategy`; | ||
# ! 1) activate `find_unused_parameters=True`, 2) change from self.manual_backward(loss) to loss.backward() | ||
# ! Neither of them is desirable. | ||
dm = MNISTDataModule() | ||
trainer = Trainer( | ||
accelerator="auto", | ||
devices=[0, 1, 2, 3], | ||
strategy=MultiModelDDPStrategy(), | ||
max_epochs=100, | ||
) | ||
|
||
trainer.fit(model, dm) | ||
|
||
|
||
if __name__ == "__main__": | ||
cli_lightning_logo() | ||
parser = ArgumentParser() | ||
|
||
# Hyperparameters | ||
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") | ||
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") | ||
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of second order momentum of gradient") | ||
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") | ||
args = parser.parse_args() | ||
|
||
main(args) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
lets move it out s a funtion