Skip to content

Commit c359e16

Browse files
authored
Merge pull request #1 from MLEveryday/master
1
2 parents 430cccf + a91c3bd commit c359e16

File tree

2 files changed

+1602
-1
lines changed

2 files changed

+1602
-1
lines changed

README.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,6 @@
11
# AI实战-[practicalAI](https://github.com/GokuMohandas/practicalAI) 中文版
2+
[![Colab](https://img.shields.io/badge/launch-Google%20Colab-orange.svg)](https://github.com/GokuMohandas/practicalAI#notebooks)
3+
[![MIT](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://github.com/GokuMohandas/practicalAI/blob/master/LICENSE)
24

35
让你有能力使用机器学习从数据中获取有价值的见解。
46
- 🔥 使用 [PyTorch](https://pytorch.org/) 实现基本的机器学习算法和深度神经网络。
@@ -13,7 +15,7 @@
1315
|🔢 [NumPy](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/02_NumPy.ipynb)|🔎 [数据和模型 Data & Models](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/09_Data_and_Models.ipynb)|🔮 自编码器 Autoencoders|🏘️ Topic Modeling|
1416
| 🐼 [Pandas](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/03_Pandas.ipynb) |📦 [面向对象的机器学习 Object-Oriented ML](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/10_Object_Oriented_ML.ipynb)|🎭 生成对抗网络 Generative Adversarial Networks|🛒 推荐系统 Recommendation Systems|
1517
|📈 [线性回归 Linear Regression](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/04_Linear_Regression.ipynb)|🖼️ [卷积神经网络 Convolutional Neural Networks](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/11_Convolutional_Neural_Networks.ipynb)|🐝 空间变换模型 Spatial Transformer Networks|🗣️ 预训练语言模型 Pretrained Language Modeling|
16-
|📊 [Logistic Regression](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/05_Logistic_Regression.ipynb)|📝 [嵌入层 Embeddings](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/12_Embeddings.ipynb)||🤷 多任务学习 Multitask Learning|
18+
|📊 [逻辑回归 Logistic Regression](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/05_Logistic_Regression.ipynb)|📝 [嵌入层 Embeddings](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/12_Embeddings.ipynb)||🤷 多任务学习 Multitask Learning|
1719
|🌳 [随机森林 Random Forests](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/06_Random_Forests.ipynb)|📗 [递归神经网络 Recurrent Neural Networks](https://colab.research.google.com/github/MLEveryday/practicalAI-cn/blob/master/notebooks/13_Recurrent_Neural_Networks.ipynb)||🎯 Low Shot Learning|
1820
|💥 k-均值聚类 KMeans Clustering|||🍒 强化学习 Reinforcement Learning|
1921

0 commit comments

Comments
 (0)