@@ -39,37 +39,39 @@ def init_spectral_library(
39
39
- precursor_df_unfiltered attribute is set to the original precursor dataframe.
40
40
"""
41
41
# normalize RT
42
- spectral_library .precursor_df ["rt_library" ] = _norm_to_rt (
43
- dia_rt_values , spectral_library .precursor_df ["rt_library" ].values
42
+ spectral_library ._precursor_df ["rt_library" ] = _norm_to_rt (
43
+ dia_rt_values , spectral_library ._precursor_df ["rt_library" ].values
44
44
)
45
45
46
46
# filter based on precursor observability
47
47
lower_mz_limit = dia_cycle [dia_cycle > 0 ].min ()
48
48
upper_mz_limit = dia_cycle [dia_cycle > 0 ].max ()
49
49
50
- n_precursor_before = np .sum (spectral_library .precursor_df ["decoy" ] == 0 )
51
- spectral_library .precursor_df = spectral_library .precursor_df [
52
- (spectral_library .precursor_df ["mz_library" ] >= lower_mz_limit )
53
- & (spectral_library .precursor_df ["mz_library" ] <= upper_mz_limit )
50
+ # TODO using spectral_library.precursor_df (no underscore) here will trigger the setter method, which will additionally call refine_precursor_df()
51
+
52
+ n_precursor_before = np .sum (spectral_library ._precursor_df ["decoy" ] == 0 )
53
+ spectral_library ._precursor_df = spectral_library ._precursor_df [
54
+ (spectral_library ._precursor_df ["mz_library" ] >= lower_mz_limit )
55
+ & (spectral_library ._precursor_df ["mz_library" ] <= upper_mz_limit )
54
56
]
55
- n_precursors_after = np .sum (spectral_library .precursor_df ["decoy" ] == 0 )
57
+ n_precursors_after = np .sum (spectral_library ._precursor_df ["decoy" ] == 0 )
56
58
reporter .log_string (
57
59
f"Initializing spectral library: { n_precursors_after :,} target precursors potentially observable ({ n_precursor_before - n_precursors_after :,} removed)" ,
58
60
verbosity = "progress" ,
59
61
)
60
62
61
63
# filter spectral library to only contain precursors from allowed channels
62
- spectral_library .precursor_df_unfiltered = spectral_library .precursor_df .copy ()
64
+ spectral_library .precursor_df_unfiltered = spectral_library ._precursor_df .copy ()
63
65
64
66
if channel_filter :
65
67
selected_channels = [int (c ) for c in channel_filter .split ("," )]
66
68
67
- spectral_library .precursor_df = spectral_library .precursor_df_unfiltered [
69
+ spectral_library ._precursor_df = spectral_library .precursor_df_unfiltered [
68
70
spectral_library .precursor_df_unfiltered ["channel" ].isin (selected_channels )
69
71
].copy ()
70
72
71
73
reporter .log_string (
72
- f"Initializing spectral library: applied channel filter using only { selected_channels } , { len (spectral_library .precursor_df ):,} precursors left" ,
74
+ f"Initializing spectral library: applied channel filter using only { selected_channels } , { len (spectral_library ._precursor_df ):,} precursors left" ,
73
75
)
74
76
75
77
0 commit comments