Skip to content

πŸ“š Academic project that compiles activities and algorithms developed in the Programming for Artificial Intelligence course of the Artificial Intelligence Engineering degree (FIME, UANL). πŸ” Covers everything from πŸ—‚οΈ data preparation and πŸ› οΈ virtual environments to πŸ€– implementing fundamental algorithms for modern AI.

Notifications You must be signed in to change notification settings

MrBrightside0/Programming-for-Artificial-Intelligence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

8 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“š Programming for Artificial Intelligence

Dr. Erick de JesΓΊs Ordaz Rivas
Artificial Intelligence Engineering – FIME, UANL


🎯 Course Competency

The course Programming for Artificial Intelligence consists of three phases that enable students to develop skills to program basic AI algorithms such as A*, K-Means, or Logistic Regression.


πŸ“Œ Phase 1: AI-oriented tools and languages

  • Installation and configuration of development environments (VSCode, Anaconda, RStudio).
  • Creation and management of virtual environments.
  • Use of Git and version control for collaboration.
  • Basic programming in Python, following best practices and modular programming.

πŸ“Œ Phase 2: Data and operations

  • Basic operations for data processing and cleaning.
  • Normalization, scaling, handling missing values.
  • Vectorized operations for computational efficiency.
  • Programming reusable functions.

πŸ“Œ Phase 3: Algorithms

  • Implementation of classic AI algorithms:
    • A* search.
    • Iterative algorithms like K-Means.
    • Logistic Regression.
  • Using flowcharts and pseudocode as development guidelines.

πŸ“‚ Repository Structure

πŸ“ Programming-AI
β”‚
β”œβ”€β”€ πŸ“ AF4/ # Fundamental Activity 4 - Virtual environment + practice files
β”‚ β”œβ”€β”€ README.md # Activity description and instructions
β”‚ β”œβ”€β”€ venv/ # Virtual environment for AF4
β”‚ └── src/ # Python scripts for this activity
β”‚
β”œβ”€β”€ πŸ“ AF5/ # Fundamental Activity 5 - Virtual environment + practice files
β”‚ β”œβ”€β”€ README.md
β”‚ β”œβ”€β”€ venv/
β”‚ └── src/
β”‚
β”œβ”€β”€ πŸ“ AF6/ # Fundamental Activity 6 - Virtual environment + practice files
β”‚ β”œβ”€β”€ README.md
β”‚ β”œβ”€β”€ venv/
β”‚ └── src/
β”‚
β”œβ”€β”€ πŸ“ Final_Project/ # Final integrative project
β”‚ β”œβ”€β”€ README.md # Project documentation
β”‚ β”œβ”€β”€ venv/ # Virtual environment for final project
β”‚ β”œβ”€β”€ data/ # Datasets used in the project
β”‚ └── src/ # Implementation scripts and notebooks
β”‚
β”œβ”€β”€ πŸ“ Extra_Class_Activities/ # Additional or optional activities outside the syllabus
β”‚ β”œβ”€β”€ README.md
β”‚ └── examples/ # Example scripts or resources
β”‚
└── requirements.txt # List of Python dependencies


πŸ“ Tasks and Grading

Activity Points
Final Integrative Project 30 pts
Fundamental Activity 4 15 pts
Fundamental Activity 5 15 pts
Fundamental Activity 6 15 pts

βš™οΈ Technologies and Tools

  • Language: Python 3.12
  • Development environment: Visual Studio Code
  • Virtual environments: venv
  • Version control: Git and GitHub
  • Main libraries:
    • numpy
    • pandas
    • matplotlib
    • scikit-learn

πŸš€ How to Run This Repository

  1. Clone the repository:
    git clone https://github.com/user/Programming-AI.git

About

πŸ“š Academic project that compiles activities and algorithms developed in the Programming for Artificial Intelligence course of the Artificial Intelligence Engineering degree (FIME, UANL). πŸ” Covers everything from πŸ—‚οΈ data preparation and πŸ› οΈ virtual environments to πŸ€– implementing fundamental algorithms for modern AI.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages