A sleek and interactive AI-powered digit recognition app built using Python, Streamlit, OpenCV, and Scikit-Learn.
✅ Upload, Draw, or Use Camera – Three ways to input a digit
✅ Camera Feed – Capture image using your computer’s camera
✅ Interactive Charts – Visualize model confidence levels
✅ Adaptive Thresholding – Improves digit recognition accuracy
✅ Smooth UI & Animations – Modern sidebar, CSS enhancements, and loading effects
- Upload Image – Upload a handwritten digit image
- Draw Image – Use an interactive canvas to draw a digit
- Camera Image – Capture a digit using the webcam
- Converts the image to grayscale
- Applies adaptive thresholding for better contrast
- Resizes to 28×28 pixels (MNIST format)
- Inverts colors (black digit on white background)
- Normalizes and flattens the image for model input
- The Extra Trees Classifier predicts the digit
- Displays confidence levels in an interactive bar chart
- The predicted digit is displayed with a success message
- A probability distribution chart visualizes confidence scores
- Python (Core logic)
- Streamlit (Web app framework)
- OpenCV (Image processing)
- Scikit-Learn (Machine learning models)
- Altair (Data visualization)
- Pillow (Image manipulation)
- Joblib (Model loading)
git clone https://github.com/Mrcolgate2024/NBI_python_delkurs2_kunskapskontroll
cd NBI_python_delkurs2_kunskapskontroll
pip install -r requirements.txt
streamlit run DigitRecog_App.py
🔹 Add more machine learning models for comparison
🔹 Enhance UI with animations and custom themes
🔹 Deploy the app online for public access - digitsense.streamlit.app")
🚀 Built by Bjorn R Axelsson