|
3 | 3 | Copyright (C) 2025 M. Reza Dwi Prasetiawan |
4 | 4 |
|
5 | 5 | This project contains various experiments and explorations in C++, |
6 | | - including topics such as number systems, neural networks, and |
| 6 | + including topics such as number systems, neural networks, and |
7 | 7 | visualizations of prime number patterns. |
8 | 8 |
|
9 | 9 | This program is free software: you can redistribute it and/or modify |
|
20 | 20 | along with this program. If not, see <https://www.gnu.org/licenses/>. |
21 | 21 | */ |
22 | 22 |
|
23 | | - |
24 | 23 | #pragma once |
25 | 24 |
|
| 25 | +#include <cstddef> |
| 26 | +#include <random> |
26 | 27 | #include <type_traits> |
27 | | - |
28 | | -#define INPUT_SIZE 1 |
29 | | -#define HIDDEN1_SIZE 256 |
30 | | -#define HIDDEN2_SIZE 256 |
31 | | -#define OUTPUT_SIZE 1 |
32 | | - |
33 | 28 | namespace NN { |
34 | 29 |
|
35 | | -template <typename FP, |
| 30 | +enum ACTIVATION_TYPE { RELU, SIGMOID, TANH }; |
| 31 | + |
| 32 | +// peelu dimasukan ke typename karena semua array di dalamnya statis |
| 33 | +template <typename FP, size_t inputSize, size_t hidden1Size, size_t hidden2Size, |
| 34 | + size_t outputSize, |
36 | 35 | typename = std::enable_if_t<std::is_floating_point_v<FP>, FP>> |
37 | | -class BaseFFN { |
38 | | - FP wIn[INPUT_SIZE][HIDDEN1_SIZE], wHid1[HIDDEN1_SIZE][HIDDEN2_SIZE], |
39 | | - wHid2[HIDDEN2_SIZE][OUTPUT_SIZE]; |
40 | | - FP bIn[INPUT_SIZE], bHid1[HIDDEN1_SIZE], b[OUTPUT_SIZE]; |
41 | | - void init_wb() {} |
| 36 | +class FFN { |
| 37 | + ACTIVATION_TYPE act_t; |
| 38 | + FP wIn[inputSize][hidden1Size], wHid1[hidden1Size][hidden2Size], |
| 39 | + wHid2[hidden2Size][outputSize]; |
| 40 | + FP bIn[hidden1Size], bHid1[hidden2Size], bHid2[outputSize]; |
| 41 | + FP resIn[hidden1Size], resHid1[hidden2Size], res[outputSize]; |
| 42 | + bool xavier = false; |
| 43 | + |
| 44 | + template <size_t inSize, size_t outSize> |
| 45 | + void init_layer(FP k, FP (&w)[inSize][outSize], FP (&b)[inSize]) { |
| 46 | + std::random_device rd; |
| 47 | + std::mt19937 gen(rd); |
| 48 | + std::normal_distribution<FP> dis(0, std::sqrt(k)); |
| 49 | + |
| 50 | + for (size_t i = 0; i < outSize; ++i) { |
| 51 | + for (size_t j = 0; j < inSize; ++j) w[j][i] = dis(gen); |
| 52 | + b[i] = 1e-6; |
| 53 | + } |
| 54 | + } |
| 55 | + |
| 56 | + void init_wb() { |
| 57 | + FP k0 = inputSize, k1 = hidden1Size, k2 = hidden2Size; |
| 58 | + if (xavier) { |
| 59 | + k0 += hidden1Size; |
| 60 | + k1 += hidden2Size; |
| 61 | + k2 += outputSize; |
| 62 | + } |
| 63 | + init_layer<inputSize, hidden1Size>(k0, wIn, bIn); |
| 64 | + init_layer<hidden1Size, hidden2Size>(k1, wHid1, bHid1); |
| 65 | + init_layer<hidden2Size, outputSize>(k2, wHid2, bHid2); |
| 66 | + } |
| 67 | + |
| 68 | + static FP ReLU(FP x) { return x > 0 ? x : 1e-6; } |
| 69 | + static FP ReLU_deriv(FP y) { return y > 0 ? 1 : 1e-6; } |
| 70 | + static FP sigmoid(FP x) { return 1 / (1 + std::exp(-x)); } |
| 71 | + static FP sigmoid_deriv(FP y) { return y * (1 - y); } |
| 72 | + static FP tanh(FP x) { return std::tanh(x); } |
| 73 | + static FP tanh_deriv(FP y) { return 1 - y * y; } |
| 74 | + |
| 75 | + template <size_t inSize, size_t outSize, bool hidden> |
| 76 | + void forward_layer(FP (&w)[inSize][outSize], FP (&b)[outSize], |
| 77 | + FP (&in)[inputSize], FP (&res)[outSize], |
| 78 | + FP (*actFunc)(FP x)) { |
| 79 | + for (size_t i = 0; i < outSize; ++i) { |
| 80 | + for (size_t j = 0; j < inSize; ++j) |
| 81 | + res[i] += hidden ? actFunc(in[i] * w[j][i]) : w[j][i] * res[j][i]; |
| 82 | + res[i] += b[i]; |
| 83 | + } |
| 84 | + } |
42 | 85 |
|
43 | 86 | public: |
44 | | - BaseFFN() { init_wb(); } |
45 | | - FP (&forward())[OUTPUT_SIZE] {} |
| 87 | + FFN(ACTIVATION_TYPE act_t = ACTIVATION_TYPE::RELU) : act_t(act_t) { |
| 88 | + init_wb(); |
| 89 | + } |
| 90 | + FP (&forward(FP (&data)[inputSize]))[outputSize] { |
| 91 | + // reset layer data first |
| 92 | + resIn = {}; |
| 93 | + resHid1 = {}; |
| 94 | + res = {}; |
| 95 | + auto actFuncFromType = [](ACTIVATION_TYPE act_t) { |
| 96 | + switch (act_t) { |
| 97 | + case ACTIVATION_TYPE::RELU: return ReLU; |
| 98 | + case ACTIVATION_TYPE::SIGMOID: return sigmoid; |
| 99 | + case ACTIVATION_TYPE::TANH: return tanh; |
| 100 | + } |
| 101 | + }; |
| 102 | + forward_layer(wIn, bIn, data, resIn, actFuncFromType(act_t)); |
| 103 | + forward_layer(wHid1, bHid1, resIn, resHid1, actFuncFromType(act_t)); |
| 104 | + forward_layer(wHid2, bHid2, resHid1, res, actFuncFromType(act_t)); |
| 105 | + return res; |
| 106 | + } |
46 | 107 | }; |
47 | 108 |
|
48 | 109 | } // namespace NN |
0 commit comments