Skip to content

Muhammad-Hassan-Farid/Langchain-Unlocked

Repository files navigation

🦜🔗 LangChain Unlocked

LangChain Python License Status

A comprehensive collection of LangChain tutorials, examples, and practical implementations to unlock the full potential of building AI-powered applications.

🚀 Overview

LangChain Unlocked is your complete guide to mastering LangChain - from basic concepts to advanced implementation patterns. This repository contains hands-on examples, real-world use cases, and best practices for building production-ready AI applications.

What You'll Learn

  • Core LangChain Components: Models, Prompts, Chains, and Agents
  • Document Processing: Loading, splitting, and vectorizing documents
  • Memory Management: Conversation buffers and retrieval systems
  • RAG Implementation: Retrieval-Augmented Generation patterns
  • Agent Development: Tool-using AI agents for complex tasks
  • Production Deployment: Scaling and monitoring LangChain applications

📁 Repository Structure

├── 01_fundamentals/           # Core LangChain concepts
│   ├── models_and_prompts/
│   ├── chains_basics/
│   └── output_parsers/
├── 02_document_processing/    # Document handling and RAG
│   ├── loaders/
│   ├── text_splitters/
│   └── vector_stores/
├── 03_memory_systems/         # Conversation and context management
│   ├── conversation_buffer/
│   ├── summary_memory/
│   └── retrieval_memory/
├── 04_agents_and_tools/       # Autonomous agents
│   ├── basic_agents/
│   ├── custom_tools/
│   └── multi_agent_systems/
├── 05_advanced_patterns/      # Complex implementations
│   ├── rag_systems/
│   ├── guardrails/
│   └── evaluation/
├── 06_production/             # Deployment and monitoring
│   ├── api_deployment/
│   ├── streaming/
│   └── monitoring/
├── projects/                  # End-to-end projects
├── notebooks/                 # Jupyter notebooks
├── requirements.txt
└── README.md

🛠️ Quick Start

Prerequisites

  • Python 3.8 or higher
  • OpenAI API key (or other LLM provider)
  • Git

Installation

  1. Clone the repository

    git clone https://github.com/Muhammad-Hassan-Farid/Langchain-Unlocked.git
    cd Langchain-Unlocked
  2. Create a virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Set up environment variables

    cp .env.example .env
    # Edit .env with your API keys

Your First LangChain Application

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage

# Initialize the model
llm = ChatOpenAI(temperature=0.7)

# Create a simple chat
response = llm.invoke([HumanMessage(content="Hello, LangChain!")])
print(response.content)

📚 Learning Path

Beginner Track

  1. Start Here: 01_fundamentals/models_and_prompts/
  2. Build Chains: 01_fundamentals/chains_basics/
  3. Handle Documents: 02_document_processing/loaders/

Intermediate Track

  1. Add Memory: 03_memory_systems/conversation_buffer/
  2. Create Agents: 04_agents_and_tools/basic_agents/
  3. Build RAG Systems: 05_advanced_patterns/rag_systems/

Advanced Track

  1. Custom Tools: 04_agents_and_tools/custom_tools/
  2. Production Patterns: 06_production/
  3. Complete Projects: projects/

🎯 Featured Examples

📄 Document Q&A System

from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain.chains import RetrievalQA

# Load and process documents
loader = PyPDFLoader("document.pdf")
docs = loader.load_and_split()

# Create vector store
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(docs, embeddings)

# Build Q&A chain
qa_chain = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(),
    retriever=vectorstore.as_retriever()
)

🤖 Intelligent Agent

from langchain.agents import create_openai_functions_agent
from langchain_community.tools import DuckDuckGoSearchRun

# Create tools
search = DuckDuckGoSearchRun()
tools = [search]

# Build agent
agent = create_openai_functions_agent(
    llm=ChatOpenAI(),
    tools=tools,
    prompt=agent_prompt
)

🗂️ Key Topics Covered

Core Components

  • Models: OpenAI, Anthropic, Hugging Face integration
  • Prompts: Template management and optimization
  • Chains: Sequential and parallel processing
  • Memory: Context retention strategies

Advanced Features

  • Retrieval-Augmented Generation (RAG)
  • Agent-based architectures
  • Custom tool development
  • Streaming responses
  • Error handling and retries

Production Considerations

  • API rate limiting
  • Cost optimization
  • Performance monitoring
  • Security best practices

🛡️ Best Practices

Security

  • Never commit API keys to version control
  • Use environment variables for sensitive data
  • Implement proper input validation
  • Set up usage monitoring and alerts

Performance

  • Cache frequently used embeddings
  • Implement proper retry mechanisms
  • Use streaming for long responses
  • Monitor token usage and costs

Code Quality

  • Follow PEP 8 style guidelines
  • Include comprehensive error handling
  • Write unit tests for custom components
  • Document your code thoroughly

📊 Projects

1. Smart Document Assistant

  • Upload PDFs, analyze content, ask questions
  • Technologies: RAG, FAISS, Streamlit

2. Research Agent

  • Autonomous research with web search capabilities
  • Technologies: Agents, Tools, Memory

3. Code Analysis Bot

  • Analyze GitHub repositories and provide insights
  • Technologies: GitHub API, Code parsing, Summarization

4. Customer Support Chatbot

  • Context-aware customer service automation
  • Technologies: Memory, Classification, Intent detection

🔧 Requirements

langchain>=0.1.0
langchain-openai>=0.1.0
langchain-community>=0.0.20
python-dotenv>=1.0.0
streamlit>=1.28.0
faiss-cpu>=1.7.4
pypdf>=3.17.0
chromadb>=0.4.0

📖 Documentation

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

How to Contribute

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Contribution Guidelines

  • Follow existing code style and structure
  • Add tests for new features
  • Update documentation as needed
  • Provide clear commit messages

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

👨‍💻 Author

Muhammad Hassan Farid

  • 🔗 GitHub
  • 💼 Data Scientist | Deep Learning | Computer Vision | NLP
  • 📧 Contact

🙏 Acknowledgments

  • LangChain Team for the amazing framework
  • OpenAI for the powerful language models
  • The open-source community for continuous inspiration

📈 Stats

GitHub stars GitHub forks GitHub issues


Star this repository if you find it helpful!

🐛 Found a bug? Open an issue

💡 Have a suggestion? Start a discussion

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published