-
Notifications
You must be signed in to change notification settings - Fork 2
Open
Labels
testingtesting duhtesting duh
Description
Local tests on V Computer
- network: UoR LAN/eth0 (not over WiFi)
- CPU:
*-cpu
product: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
vendor: Intel Corp.
physical id: 1
bus info: cpu@0
size: 2303MHz
capacity: 2800MHz
width: 64 bits
Test code:
import os
import numpy as np
from activestorage.active import Active
S3_ACTIVE_URL_Bryan = "https://192.171.169.248:8080"
S3_BUCKET = "bnl"
def gold_test():
"""Run somewhat as the 'gold' test."""
storage_options = {
'key': "f2d55c6dcfc7618b2c34e00b58df3cef",
'secret': "$/'#M{0{/4rVhp%n^(XeX$q@y#&(NM3W1->~N.Q6VP.5[@bLpi='nt]AfH)>78pT",
'client_kwargs': {'endpoint_url': "https://uor-aces-o.s3-ext.jc.rl.ac.uk"},
}
active_storage_url = "https://192.171.169.248:8080"
bigger_file = "ch330a.pc19790301-bnl.nc"
test_file_uri = os.path.join(
S3_BUCKET,
bigger_file
)
print("S3 Test file path:", test_file_uri)
active = Active(test_file_uri, 'UM_m01s16i202_vn1106', storage_type="s3",
storage_options=storage_options,
active_storage_url=active_storage_url)
# old test with 3GB file
# active2 = Active(test_file_uri, 'm01s06i247_4', storage_type="s3",
# storage_options=storage_options,
# active_storage_url=active_storage_url)
active._version = 1
active._method = "min"
result = active[:]
# result = active[0:3, 4:6, 7:9] # standardized slice
print("Result is", result)
return result
Kerchunk is restricted to Dataset
of interest:
Looking only at a single Dataset <HDF5 dataset "UM_m01s16i202_vn1106": shape (40, 1920, 2560), type "<f4">
Chunks
Both Kerchunk and Pyfive send variable (give or take 5 or 10) numbers of chunks to Reductionist; order of magnitude is 3360 chunks.
Kerchunk-based Pipeline
Result is 4677.8594 (stable)
- 18.03user 2.24system 1:37.77elapsed 20%CPU (0avgtext+0avgdata 202112maxresident)k
- 20.00user 2.02system 1:35.60elapsed 23%CPU (0avgtext+0avgdata 203124maxresident)k
- 19.64user 2.26system 1:34.86elapsed 23%CPU (0avgtext+0avgdata 201880maxresident)k
- 20.95user 2.43system 1:34.75elapsed 24%CPU (0avgtext+0avgdata 200884maxresident)k
- 14.94user 1.49system 1:34.19elapsed 17%CPU (0avgtext+0avgdata 201932maxresident)k
- 15.47user 1.72system 1:47.83elapsed 15%CPU (0avgtext+0avgdata 203052maxresident)k
- 20.04user 2.19system 1:33.50elapsed 23%CPU (0avgtext+0avgdata 202192maxresident)k
- 19.73user 2.08system 1:35.95elapsed 22%CPU (0avgtext+0avgdata 202144maxresident)k
- 20.65user 2.44system 1:31.98elapsed 25%CPU (0avgtext+0avgdata 200952maxresident)k
Kerchunk indexing and JSON file writing times:
- Time to Kerchunk and write JSON file 21.811710596084595
- Time to Kerchunk and write JSON file 20.934044361114502
- Time to Kerchunk and write JSON file 21.715813636779785
- Time to Kerchunk and write JSON file 21.793660879135132
Pyfive-based pipeline
Result is 4677.8594 (stable)
- 21.54user 3.07system 1:22.10elapsed 29%CPU (0avgtext+0avgdata 195224maxresident)k
- 21.28user 2.79system 1:19.94elapsed 30%CPU (0avgtext+0avgdata 196944maxresident)k
- 21.47user 2.73system 1:25.87elapsed 28%CPU (0avgtext+0avgdata 198084maxresident)k
- 21.05user 2.93system 1:35.86elapsed 25%CPU (0avgtext+0avgdata 197568maxresident)k
- 21.45user 2.78system 1:30.15elapsed 26%CPU (0avgtext+0avgdata 197820maxresident)k
Sliced Kerchunk (slice [0:3, 4:6, 7:9]
)
- Time to Kerchunk and write JSON file 21.60s; 27s TOTAL
- Time to Kerchunk and write JSON file 22.16s; 27s TOTAL
- Time to Kerchunk and write JSON file 21.15s; 27s TOTAL
- Time to Kerchunk and write JSON file 22.61s; 28s TOTAL
Sliced Pyfive (slice [0:3, 4:6, 7:9]
)
- 14s TOTAL
- 13s TOTAL
- 12s TOTAL
- 13.4s TOTAL
Metadata
Metadata
Assignees
Labels
testingtesting duhtesting duh