Skip to content

Issues regarding datawise unlearning  #5

@AKANKSHASINGH233

Description

@AKANKSHASINGH233

Hi @ljcc0930 @a-F1 :):)
the command-python main_selmu.py --arch resnet18 --dataset cifar10 --cp_path results/cifar10_resnet/origin/0model_SA_best.pth.tar --select_epochs 2 --num_indexes_to_replace 4500 --unlearn w_retrain --unlearn_steps 2 --theta_lr 1e-3 --save_dir results/cifar10_resnet/data-wise
followed by
python main_evalmu.py --arch resnet18 --dataset cifar10 --cp_path results/cifar10_resnet/origin/0model_SA_best.pth.tar --unlearn retrain --num_indexes_to_replace 4500 --unlearn_steps 182 --theta_lr 0.1 --w_path results/cifar10_resnet/data-wise/select_weight.pth.tar --save_dir results/cifar10_resnet/evaluation
yields UA almost same as RA I tried but i am unable to understand why is it not reducing to 5% as mentioned in the paper ?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions