-
Notifications
You must be signed in to change notification settings - Fork 832
/
Copy pathfinetune.py
86 lines (70 loc) · 2.83 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 Statistics and Machine Learning Research Group at HKUST. All rights reserved.
"""A one-line summary of the module or program, terminated by a period.
Leave one blank line. The rest of this docstring should contain an
overall description of the module or program. Optionally, it may also
contain a brief description of exported classes and functions and/or usage
examples.
Typical usage example:
foo = ClassFoo()
bar = foo.FunctionBar()
"""
import os
import sys
from transformers import HfArgumentParser
from lmflow.args import (
ModelArguments,
DatasetArguments,
AutoArguments,
)
from lmflow.datasets.dataset import Dataset
from lmflow.models.auto_model import AutoModel
from lmflow.pipeline.auto_pipeline import AutoPipeline
def main():
# Parses arguments
pipeline_name = "finetuner"
PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)
parser = HfArgumentParser((ModelArguments, DatasetArguments, PipelineArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, pipeline_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, pipeline_args = parser.parse_args_into_dataclasses()
# TODO: deepspeed config initialization
# Initialization
finetuner = AutoPipeline.get_pipeline(
pipeline_name=pipeline_name,
model_args=model_args,
data_args=data_args,
pipeline_args=pipeline_args,
)
dataset = Dataset(data_args)
model = AutoModel.get_model(
model_args,
lang=data_args.lang,
forced_bos_token=data_args.forced_bos_token,
source_prefix = data_args.source_prefix,
streaming = data_args.streaming,
preprocessing_num_workers = data_args.preprocessing_num_workers,
overwrite_cache = data_args.overwrite_cache,
max_source_length = data_args.max_source_length,
max_target_length = data_args.max_target_length,
pad_to_max_length = data_args.pad_to_max_length
)
# Tokenization and text grouping must be done in the main process
with pipeline_args.main_process_first(desc="dataset map tokenization"):
tokenized_dataset = model.tokenize(dataset)
if model_args.arch_type == "encoder_decoder":
# encoder-decoder model does not need group text
lm_dataset = tokenized_dataset
else:
lm_dataset = finetuner.group_text(
tokenized_dataset,
model_max_length=model.get_max_length(),
)
# Finetuning
tuned_model = finetuner.tune(model=model, lm_dataset=lm_dataset)
if __name__ == '__main__':
main()