Skip to content

This repository demonstrates the expected structure and content that will be automatically synced by the Osmosis GitHub integration.

License

Notifications You must be signed in to change notification settings

Osmosis-AI/osmosis-git-sync-example

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Example Repository for Osmosis GitHub Sync

This repository demonstrates the expected structure and content that will be automatically synced by the Osmosis GitHub integration. It is expected that your tools and reward use python version 3.10

Repository Structure

/mcp/ - MCP Tools Directory

Contains Python files with MCP (Model Context Protocol) tool functions that will be automatically discovered and synced to the Osmosis platform.

Files:

  • data_tools.py - Tools for fetching and processing user data
  • ml_utils.py - Machine learning utility functions
  • api_helpers.py - API validation and formatting helpers

Requirements:

  • Functions must be decorated with @mcp.tool()
  • Functions should include proper type hints
  • Docstrings should describe the function's purpose and parameters

/reward_fn/ - Reward Function Directory

Contains the reward function implementation for reinforcement learning or behavior analysis.

Files:

  • compute_reward.py - Main reward computation function

Requirements:

  • Must contain a compute_reward function
  • Function should accept state, action, next_state, and optional metadata parameters
  • Should return a numeric reward value

Sync Process

When this repository is connected to the Osmosis platform:

  1. MCP Tools: All @mcp.tool() decorated functions in /mcp/ will be:

    • Parsed for function signatures and parameters
    • Stored in the tools database with metadata
    • Made available for use in the platform
  2. Reward Functions: The compute_reward function in /reward_fn/compute_reward.py will be:

    • Extracted and stored as a reward function
    • Available for reinforcement learning workflows
    • Used in behavior analysis and optimization

Example Usage

MCP Tools

import mcp

@mcp.tool()
def my_custom_tool(param1: str, param2: int = 10) -> dict:
    """
    Description of what this tool does.
    
    Args:
        param1: Description of first parameter
        param2: Description of second parameter with default
    
    Returns:
        Description of return value
    """
    # Tool implementation
    return {"result": "processed"}

Reward Function

def compute_reward(state: dict, action: dict, next_state: dict, metadata: dict = None) -> float:
    """
    Compute reward for a state transition.
    
    Args:
        state: Current state
        action: Action taken
        next_state: Resulting state
        metadata: Additional context
    
    Returns:
        Numeric reward value
    """
    # Reward computation logic
    return 1.0

Setup Instructions

Virtual Environment Setup

  1. Create a virtual environment:

    python -m venv venv
  2. Activate the virtual environment:

    • On macOS/Linux:
      source venv/bin/activate
    • On Windows:
      venv\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt

Development Notes

  • All Python files should follow proper Python conventions
  • Type hints are recommended for better tool discovery
  • Docstrings help with automatic documentation generation
  • Functions should handle edge cases gracefully
  • Consider the execution environment when implementing tools

Repo structure

your-repo/
├── mcp/              # MCP tools directory
│   ├── server/
│   │   └── mcp_server.py
│   └── tools/
│       ├── tool1.py
│       └── tool2.py
└── reward_fn/        # Reward functions directory
    └── compute_reward.py

About

This repository demonstrates the expected structure and content that will be automatically synced by the Osmosis GitHub integration.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages