Skip to content

RuntimeError: Error(s) in loading state_dict for Generator: Missing key(s) in state_dict: #159

@goongzi-leean

Description

@goongzi-leean

When I load AGGAN-Mod, I get this error:

RuntimeError: Error(s) in loading state_dict for Generator:
Missing key(s) in state_dict: "blocks.0.0.bn1.gain.weight", "blocks.0.0.bn1.bias.weight", "blocks.0.0.bn2.gain.weight", "blocks.0.0.bn2.bias.weight", "blocks.1.0.bn1.gain.weight", "blocks.1.0.bn1.bias.weight", "blocks.1.0.bn2.gain.weight", "blocks.1.0.bn2.bias.weight", "blocks.2.0.bn1.gain.weight", "blocks.2.0.bn1.bias.weight", "blocks.2.0.bn2.gain.weight", "blocks.2.0.bn2.bias.weight".
Unexpected key(s) in state_dict: "blocks.0.0.bn1.embed0.weight", "blocks.0.0.bn1.embed1.weight", "blocks.0.0.bn2.embed0.weight", "blocks.0.0.bn2.embed1.weight", "blocks.1.0.bn1.embed0.weight", "blocks.1.0.bn1.embed1.weight", "blocks.1.0.bn2.embed0.weight", "blocks.1.0.bn2.embed1.weight", "blocks.2.0.bn1.embed0.weight", "blocks.2.0.bn1.embed1.weight", "blocks.2.0.bn2.embed0.weight", "blocks.2.0.bn2.embed1.weight".

So I went to find out why.
The network structure in which my generator was found looks like this:

Generator(
(linear0): Linear(in_features=128, out_features=4096, bias=True)
(blocks): ModuleList(
(0): ModuleList(
(0): GenBlock(
(bn1): ConditionalBatchNorm2d(
(bn): BatchNorm2d(256, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
(gain): Linear(in_features=10, out_features=256, bias=False)
(bias): Linear(in_features=10, out_features=256, bias=False)

)
(bn2): ConditionalBatchNorm2d(
(bn): BatchNorm2d(256, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
(gain): Linear(in_features=10, out_features=256, bias=False)
(bias): Linear(in_features=10, out_features=256, bias=False)
)
(activation): ReLU(inplace=True)
(conv2d0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(conv2d1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2d2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)

And the log that the author trained looks like this:

Generator(
(linear0): Linear(in_features=128, out_features=4096, bias=True)
(blocks): ModuleList(
(0): ModuleList(
(0): GenBlock(
(bn1): ConditionalBatchNorm2d(
(bn): BatchNorm2d(256, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
(embed0): Embedding(10, 256)
(embed1): Embedding(10, 256)

)
(bn2): ConditionalBatchNorm2d(
(bn): BatchNorm2d(256, eps=0.0001, momentum=0.1, affine=False, track_running_stats=True)
(embed0): Embedding(10, 256)
(embed1): Embedding(10, 256)
)
(activation): ReLU(inplace=True)
(conv2d0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(conv2d1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2d2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)

I found ConditionalBatchNorm2d (in ops.py) in the latest code and found:

self.gain = MODULES.g_linear(in_features=in_features, out_features=out_features, bias=False)
self.bias = MODULES.g_linear(in_features=in_features, out_features=out_features, bias=False)

but g_linear= ops.linear(in config.py)

This is where the above error comes in.

ConditionalBatchNorm2d will need to be modified if a load author pre-trained generator is required. Or you can choose to retrain. This is true for all conditions GAN.

Of course, I hope the author can pay attention to this problem.

Best!

Leean

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions