@@ -50,7 +50,7 @@ def _init_model(self) -> nn.Layer:
50
50
model .eval ()
51
51
return model
52
52
53
- def get_name_mappings_to_training (self , trainer_degree = 1 ) -> Dict [str , str ]:
53
+ def get_name_mappings_to_training (self , trainer_degree = None ) -> Dict [str , str ]:
54
54
"""Get parameter name mappings between rollout and training models."""
55
55
return getattr (self .rollout_model , "get_name_mappings_to_training" , lambda : {})(trainer_degree )
56
56
@@ -92,9 +92,6 @@ def _complete_missing_mappings(self) -> None:
92
92
# Skip weight scale parameters in mapping. Train and infer have same key.
93
93
self .infer_to_train_mapping [key ] = key
94
94
95
- if getattr (self .fd_config .model_config , "tie_word_embeddings" , False ):
96
- self .infer_to_train_mapping .pop ("lm_head.linear.weight" )
97
-
98
95
def get_quantization_infer_keys (self ) -> list [str ]:
99
96
"""Get quantization infer keys"""
100
97
quant_weight_key = []
@@ -125,7 +122,7 @@ def name(self) -> str:
125
122
"""name"""
126
123
return "Ernie4_5_MoeForCausalLMRL"
127
124
128
- def get_name_mappings_to_training (self , trainer_degree = 1 ) -> Dict [str , str ]:
125
+ def get_name_mappings_to_training (self , trainer_degree = None ) -> Dict [str , str ]:
129
126
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
130
127
# Prepare placeholders
131
128
place_holders = ["weight" ]
@@ -192,7 +189,7 @@ def name(self) -> str:
192
189
"""name"""
193
190
return "Ernie4_5_VLMoeForConditionalGenerationRL"
194
191
195
- def get_name_mappings_to_training (self , trainer_degree = 2 ) -> Dict [str , str ]:
192
+ def get_name_mappings_to_training (self , trainer_degree = None ) -> Dict [str , str ]:
196
193
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
197
194
# Prepare placeholders
198
195
place_holders = ["weight" ]
@@ -255,6 +252,8 @@ def _generate_ranges(start, end, step=16, take=8):
255
252
256
253
assert isinstance (self .fd_config .model_config .moe_num_experts , list )
257
254
total_moe_num = sum (self .fd_config .model_config .moe_num_experts )
255
+ if not trainer_degree :
256
+ trainer_degree = self .fd_config .parallel_config .tensor_parallel_size
258
257
expert_num_per_rank = self .fd_config .model_config .moe_num_experts [0 ] // trainer_degree
259
258
# Process MoE layers
260
259
for layer_idx in range (text_moe_layer_start_index , text_moe_layer_end_index ):
@@ -285,7 +284,7 @@ def name(self) -> str:
285
284
"""name"""
286
285
return "Qwen2ForCausalLMRL"
287
286
288
- def get_name_mappings_to_training (self , trainer_degree = 1 ) -> Dict [str , str ]:
287
+ def get_name_mappings_to_training (self , trainer_degree = None ) -> Dict [str , str ]:
289
288
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
290
289
# Prepare placeholders
291
290
place_holders = ["weight" ]
@@ -327,7 +326,7 @@ def name(self) -> str:
327
326
"""name"""
328
327
return "Qwen3MoeForCausalLMRL"
329
328
330
- def get_name_mappings_to_training (self , trainer_degree = 1 ) -> Dict [str , str ]:
329
+ def get_name_mappings_to_training (self , trainer_degree = None ) -> Dict [str , str ]:
331
330
"""Generate mapping between inference and training parameter for RL(donot delete!)."""
332
331
# Prepare placeholders
333
332
place_holders = ["weight" ]
@@ -394,5 +393,5 @@ def name(self) -> str:
394
393
"""name"""
395
394
return "Qwen3ForCausalLMRL"
396
395
397
- def get_name_mappings_to_training (self , trainer_degree = 1 ) -> Dict [str , str ]:
396
+ def get_name_mappings_to_training (self , trainer_degree = None ) -> Dict [str , str ]:
398
397
pass
0 commit comments