Skip to content

Commit 4353b64

Browse files
authored
Update readme for release 2.6 (#6742)
* wip * update readme for 2.6 * address comments
1 parent e8ee455 commit 4353b64

File tree

1 file changed

+75
-89
lines changed

1 file changed

+75
-89
lines changed

README.md

Lines changed: 75 additions & 89 deletions
Original file line numberDiff line numberDiff line change
@@ -20,43 +20,89 @@
2020

2121

2222
<h4 align="center">
23-
<a href=#特性> 特性 </a> |
2423
<a href=#安装> 安装 </a> |
2524
<a href=#快速开始> 快速开始 </a> |
26-
<a href=#api文档> API文档 </a> |
25+
<a href=#特性> 特性 </a> |
2726
<a href=#社区交流> 社区交流 </a>
2827
</h4>
2928

30-
**PaddleNLP**是一款**简单易用****功能强大**的自然语言处理开发库。聚合业界**优质预训练模型**并提供**开箱即用**的开发体验,覆盖NLP多场景的模型库搭配**产业实践范例**可满足开发者**灵活定制**的需求。
29+
**PaddleNLP**是一款**简单易用****功能强大**的自然语言处理和大语言模型(LLM)开发库。聚合业界**优质预训练模型**并提供**开箱即用**的开发体验,覆盖NLP多场景的模型库搭配**产业实践范例**可满足开发者**灵活定制**的需求。
3130

3231
## News 📢
3332

34-
* **2023.6.12 发布 [PaddleNLP v2.6rc 预览版](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.6.0rc)**
35-
* 🔨 大模型全流程范例:全面支持主流开源大模型[BLOOM](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/bloom), [ChatGLM](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/chatglm), [GLM](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/glm), [LLaMA](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/llama), [OPT](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/opt)的训练和推理;[Trainer API](./docs/trainer.md)新增张量训练能力, 简单配置即可开启分布式训练;新增低参数微调能力[PEFT](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/paddlenlp/peft), 助力大模型高效微调
33+
* **2023.8.15 [PaddleNLP v2.6](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.6.0)**: 发布[全流程大模型工具链](./llm),涵盖预训练,精调,压缩,推理以及部署等各个环节,为用户提供端到端的大模型方案和一站式的开发体验;内置[4D并行分布式Trainer](./docs/trainer.md)[高效微调算法LoRA/Prefix Tuning](./llm#33-lora), [自研INT8/INT4量化算法](./llm#6-量化)等等;全面支持[LLaMA 1/2](./llm/llama), [BLOOM](.llm/bloom), [ChatGLM 1/2](./llm/chatglm), [GLM](./llm/glm), [OPT](./llm/opt)等主流大模型
3634

37-
* **2023.1.12 发布 [PaddleNLP v2.5](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.5.0)**
38-
* 🔨 NLP工具:发布 [PPDiffusers](./ppdiffusers) 国产化的扩散模型工具箱,集成多种 Diffusion 模型参数和模型组件,提供了 Diffusion 模型的完整训练流程,支持 Diffusion 模型的高性能 FastDeploy 推理加速 和 多硬件部署(可支持昇腾芯片、昆仑芯部署)
39-
* 💎 产业应用:信息抽取、文本分类、情感分析、智能问答 四大应用全新升级,发布文档信息抽取 [UIE-X](./applications/information_extraction/document) 、统一文本分类 [UTC](./applications/zero_shot_text_classification) 、统一情感分析 [UIE-Senta](./applications/sentiment_analysis/unified_sentiment_extraction)[无监督问答应用](./applications/question_answering/unsupervised_qa);同时发布[ERNIE 3.0 Tiny v2](./model_zoo/ernie-tiny) 系列预训练小模型,在低资源和域外数据效果更强,开源 模型裁剪、模型量化、FastDeploy 推理加速、边缘端部署 端到端部署方案,降低预训练模型部署难度
40-
* 💪 框架升级:预训练模型[参数配置统一](./paddlenlp/transformers/configuration_utils.py),自定义参数配置的保存和加载无需额外开发;[Trainer API](./docs/trainer.md) 新增 BF16 训练、Recompute 重计算、Sharding 等多项分布式能力,通过简单配置即可进行超大规模预训练模型训练;[模型压缩 API](./docs/compression.md) 支持量化训练、词表压缩等功能,压缩后的模型精度损失更小,模型部署的内存占用大大降低;[数据增强API](./docs/dataaug.md) 全面升级,支持字、词、句子三种粒度数据增强策略,可轻松定制数据增强策略
41-
* 🤝 生态联合:🤗Huggingface hub 正式兼容 PaddleNLP 预训练模型,支持 PaddleNLP Model 和 Tokenizer 直接从 🤗Huggingface hub 下载和上传,欢迎大家在 🤗Huggingface hub [体验](https://huggingface.co/PaddlePaddle) PaddleNLP 预训练模型效果
4235

43-
* **2022.9.6 发布 [PaddleNLP v2.4](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.4.0)**
44-
* 🔨 NLP工具:[NLP 流水线系统 Pipelines](./pipelines) 发布,支持快速搭建搜索引擎、问答系统,可扩展支持各类NLP系统,让解决 NLP 任务像搭积木一样便捷、灵活、高效!
45-
* 💎 产业应用:新增 [文本分类全流程应用方案](./applications/text_classification) ,覆盖多分类、多标签、层次分类各类场景,支持小样本学习和 TrustAI 可信计算模型训练与调优。
46-
* 🍭 AIGC :新增代码生成 SOTA 模型[CodeGen](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/examples/code_generation/codegen),支持多种编程语言代码生成;
47-
* 💪 框架升级:[模型自动压缩 API](./docs/compression.md) 发布,自动对模型进行裁减和量化,大幅降低模型压缩技术使用门槛;[小样本 Prompt](./applications/text_classification/multi_class/few-shot)能力发布,集成 PET、P-Tuning、RGL 等经典算法。
36+
## 安装
4837

38+
### 环境依赖
4939

50-
## 社区交流
40+
- python >= 3.7
41+
- paddlepaddle >= 2.3.0
42+
- 如需大模型功能,请使用 paddlepaddle-gpu >= 2.5.1
5143

52-
- 微信扫描二维码并填写问卷,回复小助手关键词(NLP)之后,即可加入交流群领取福利
44+
### pip安装
5345

54-
- 与众多社区开发者以及官方团队深度交流。
55-
- 10G重磅NLP学习大礼包!
46+
```shell
47+
pip install --upgrade paddlenlp
48+
```
49+
50+
或者可通过以下命令安装最新 develop 分支代码:
51+
52+
```shell
53+
pip install --pre --upgrade paddlenlp -f https://www.paddlepaddle.org.cn/whl/paddlenlp.html
54+
```
55+
56+
更多关于PaddlePaddle和PaddleNLP安装的详细教程请查看[Installation](./docs/get_started/installation.rst)
57+
58+
## 快速开始
59+
60+
61+
### 大模型文本生成
62+
63+
PaddleNLP提供了方便易用的Auto API,能够快速的加载模型和Tokenizer。这里以使用 `linly-ai/chinese-llama-2-7b` 大模型做文本生成为例:
64+
65+
```python
66+
>>> from paddlenlp.transformers import AutoTokenizer, AutoModelForCausalLM
67+
>>> tokenizer = AutoTokenizer.from_pretrained("linly-ai/chinese-llama-2-7b")
68+
>>> model = AutoModelForCausalLM.from_pretrained("linly-ai/chinese-llama-2-7b", dtype="float16")
69+
>>> input_features = tokenizer("你好!请自我介绍一下。", return_tensors="pd")
70+
>>> outputs = model.generate(**input_features, max_length=128)
71+
>>> tokenizer.batch_decode(outputs[0])
72+
['\n你好!我是一个AI语言模型,可以回答你的问题和提供帮助。']
73+
```
74+
75+
### 一键UIE预测
76+
77+
PaddleNLP提供[一键预测功能](./docs/model_zoo/taskflow.md),无需训练,直接输入数据即可开放域抽取结果。这里以信息抽取-命名实体识别任务,UIE模型为例:
78+
79+
```python
80+
>>> from pprint import pprint
81+
>>> from paddlenlp import Taskflow
82+
83+
>>> schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
84+
>>> ie = Taskflow('information_extraction', schema=schema)
85+
>>> pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!"))
86+
[{'时间': [{'end': 6,
87+
'probability': 0.9857378532924486,
88+
'start': 0,
89+
'text': '2月8日上午'}],
90+
'赛事名称': [{'end': 23,
91+
'probability': 0.8503089953268272,
92+
'start': 6,
93+
'text': '北京冬奥会自由式滑雪女子大跳台决赛'}],
94+
'选手': [{'end': 31,
95+
'probability': 0.8981548639781138,
96+
'start': 28,
97+
'text': '谷爱凌'}]}]
98+
```
99+
100+
更多PaddleNLP内容可参考:
101+
- [大模型全流程工具链](./llm),包含主流中文大模型的全流程方案。
102+
- [精选模型库](./model_zoo),包含优质预训练模型的端到端全流程使用。
103+
- [多场景示例](./examples),了解如何使用PaddleNLP解决NLP多种技术问题,包含基础技术、系统应用与拓展应用。
104+
- [交互式教程](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995),在🆓免费算力平台AI Studio上快速学习PaddleNLP。
56105

57-
<div align="center">
58-
<img src="https://user-images.githubusercontent.com/11987277/245085922-0aa68d24-00ff-442e-9c53-2f1e898151ce.png" width="150" height="150" />
59-
</div>
60106

61107
## 特性
62108

@@ -266,76 +312,16 @@ outputs, _ = model.generate(
266312

267313
更多关于千亿级AI模型的分布式训练使用说明可参考[GPT-3](./examples/language_model/gpt-3)
268314

269-
## 安装
270-
271-
### 环境依赖
272-
273-
- python >= 3.7
274-
- paddlepaddle >= 2.3
275-
276-
### pip安装
277-
278-
```shell
279-
pip install --upgrade paddlenlp
280-
```
281-
282-
或者可通过以下命令安装最新 develop 分支代码:
283-
284-
```shell
285-
pip install --pre --upgrade paddlenlp -f https://www.paddlepaddle.org.cn/whl/paddlenlp.html
286-
```
287-
288-
更多关于PaddlePaddle和PaddleNLP安装的详细教程请查看[Installation](./docs/get_started/installation.rst)
289-
290-
## 快速开始
291-
292-
这里以信息抽取-命名实体识别任务,UIE模型为例,来说明如何快速使用PaddleNLP:
293-
294-
### 一键预测
295-
296-
PaddleNLP提供[一键预测功能](./docs/model_zoo/taskflow.md),无需训练,直接输入数据即可开放域抽取结果:
297-
298-
```python
299-
>>> from pprint import pprint
300-
>>> from paddlenlp import Taskflow
301-
302-
>>> schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
303-
>>> ie = Taskflow('information_extraction', schema=schema)
304-
>>> pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!"))
305-
[{'时间': [{'end': 6,
306-
'probability': 0.9857378532924486,
307-
'start': 0,
308-
'text': '2月8日上午'}],
309-
'赛事名称': [{'end': 23,
310-
'probability': 0.8503089953268272,
311-
'start': 6,
312-
'text': '北京冬奥会自由式滑雪女子大跳台决赛'}],
313-
'选手': [{'end': 31,
314-
'probability': 0.8981548639781138,
315-
'start': 28,
316-
'text': '谷爱凌'}]}]
317-
```
318-
319-
### 小样本学习
320-
321-
如果对一键预测效果不满意,也可以使用少量数据进行模型精调,进一步提升特定场景的效果,详见[UIE小样本定制训练](./model_zoo/uie/)
322-
323-
更多PaddleNLP内容可参考:
324-
- [精选模型库](./model_zoo),包含优质预训练模型的端到端全流程使用。
325-
- [多场景示例](./examples),了解如何使用PaddleNLP解决NLP多种技术问题,包含基础技术、系统应用与拓展应用。
326-
- [交互式教程](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995),在🆓免费算力平台AI Studio上快速学习PaddleNLP。
327-
328-
329-
## API文档
330-
331-
PaddleNLP提供全流程的文本领域API,可大幅提升NLP任务建模的效率:
315+
## 社区交流
332316

333-
- 支持[千言](https://www.luge.ai)等丰富中文数据集加载的[Dataset API](https://paddlenlp.readthedocs.io/zh/latest/data_prepare/dataset_list.html)
334-
- 提供🤗Hugging Face Style的API,支持 **500+** 优质预训练模型加载的[Transformers API](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/index.html)
335-
- 提供30+多语言词向量的[Embedding API](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/embeddings.html)
317+
- 微信扫描二维码并填写问卷,回复小助手关键词(NLP)之后,即可加入交流群领取福利
336318

337-
更多使用方法请参考[API文档](https://paddlenlp.readthedocs.io/zh/latest/)
319+
- 与众多社区开发者以及官方团队深度交流。
320+
- 10G重磅NLP学习大礼包!
338321

322+
<div align="center">
323+
<img src="https://user-images.githubusercontent.com/11987277/245085922-0aa68d24-00ff-442e-9c53-2f1e898151ce.png" width="150" height="150" />
324+
</div>
339325

340326
## Citation
341327

0 commit comments

Comments
 (0)