|
| 1 | +#include "quant_utils.h" |
| 2 | + |
| 3 | +template <typename T, int VecSize> |
| 4 | +struct __align__(sizeof(T) * VecSize) VecType { |
| 5 | + T val[VecSize]; |
| 6 | + __host__ __device__ inline T& operator[](size_t i) { return val[i]; } |
| 7 | + __host__ __device__ inline const T& operator[](size_t i) const { |
| 8 | + return val[i]; |
| 9 | + } |
| 10 | +}; |
| 11 | + |
| 12 | +template <int VecSize> |
| 13 | +__device__ void BlockLoad(const phi::bfloat16* X, |
| 14 | + __nv_bfloat16 input[4][4], |
| 15 | + size_t K) { |
| 16 | + for (size_t i = 0; i < 4; i++) { |
| 17 | + size_t off_m = blockIdx.x * 128 + threadIdx.y + i * 32; |
| 18 | + size_t off_k = blockIdx.y * 128 + threadIdx.x * VecSize; |
| 19 | + size_t offset = off_m * K + off_k; |
| 20 | + |
| 21 | + for (size_t j = 0; j < 4; j += VecSize) { |
| 22 | + if (off_k + j * 32 < K) { |
| 23 | + size_t idx = offset + j * 32; |
| 24 | + using LoadT = VecType<__nv_bfloat16, VecSize>; |
| 25 | + LoadT data = *reinterpret_cast<const LoadT*>(X + idx); |
| 26 | + for (int k = 0; k < VecSize; k++) { |
| 27 | + input[i][j + k] = data[k]; |
| 28 | + } |
| 29 | + } |
| 30 | + } |
| 31 | + } |
| 32 | +} |
| 33 | + |
| 34 | +__device__ void BlockColumnMax(const __nv_bfloat16 input[4][4], |
| 35 | + __nv_bfloat16 amax[4], |
| 36 | + __nv_bfloat16* shm) { |
| 37 | + // Reduce [(4), 32, 32, 4] => [32, 32, 4] |
| 38 | + __nv_bfloat16 warp_max[4]; |
| 39 | + for (int i = 0; i < 4; i++) { |
| 40 | + for (int j = 0; j < 4; j++) { |
| 41 | + __nv_bfloat16 t = __habs(input[i][j]); |
| 42 | + warp_max[j] = i == 0 ? t : __hmax(warp_max[j], t); |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + // Reduce [(32), 32, 4] => [32, 4] |
| 47 | + for (int i = 0; i < 4; i++) { |
| 48 | + shm[threadIdx.y * 128 + i * 32 + threadIdx.x] = warp_max[i]; |
| 49 | + } |
| 50 | + __syncthreads(); |
| 51 | + for (int offset = 16; offset > 0; offset /= 2) { |
| 52 | + if (threadIdx.y < offset) { |
| 53 | + for (int i = 0; i < 4; i++) { |
| 54 | + shm[threadIdx.y * 128 + i * 32 + threadIdx.x] = |
| 55 | + __hmax(shm[threadIdx.y * 128 + i * 32 + threadIdx.x], |
| 56 | + shm[(threadIdx.y + offset) * 128 + i * 32 + threadIdx.x]); |
| 57 | + } |
| 58 | + } |
| 59 | + __syncthreads(); |
| 60 | + } |
| 61 | + |
| 62 | + for (int i = 0; i < 4; i++) { |
| 63 | + amax[i] = shm[i * 32 + threadIdx.x]; |
| 64 | + } |
| 65 | +} |
| 66 | + |
| 67 | +template <typename OutT, bool Pow2Scales, int VecSize> |
| 68 | +__device__ void BlockStoreScale(float* scale, |
| 69 | + size_t off_m, |
| 70 | + __nv_bfloat16 amax[4], |
| 71 | + float scale_inv[4], |
| 72 | + size_t K) { |
| 73 | + float scale_out[4]; |
| 74 | + for (int i = 0; i < 4; i++) { |
| 75 | + scale_inv[i] = ComputeScale<__nv_bfloat16, OutT, Pow2Scales>( |
| 76 | + static_cast<float>(amax[i]), 0.0f); |
| 77 | + scale_out[i] = __frcp_rn(scale_inv[i]); |
| 78 | + } |
| 79 | + if (threadIdx.y == 0) { |
| 80 | + size_t idx_m = blockIdx.x - off_m / 128; |
| 81 | + size_t off_k = blockIdx.y * 128 + threadIdx.x * VecSize; |
| 82 | + size_t offset = idx_m * K + off_k; |
| 83 | + |
| 84 | + for (size_t j = 0; j < 4; j += VecSize) { |
| 85 | + if (off_k + j * 32 < K) { |
| 86 | + size_t idx = offset + j * 32; |
| 87 | + using StoreT = VecType<float, VecSize>; |
| 88 | + StoreT data; |
| 89 | + for (int k = 0; k < VecSize; k++) { |
| 90 | + data[k] = scale_out[j + k]; |
| 91 | + } |
| 92 | + *reinterpret_cast<StoreT*>(scale + idx) = data; |
| 93 | + } |
| 94 | + } |
| 95 | + } |
| 96 | +} |
| 97 | + |
| 98 | +template <typename OutT, int VecSize> |
| 99 | +__device__ void BlockStoreOut(OutT* out, |
| 100 | + size_t off_m, |
| 101 | + size_t cur_tokens, |
| 102 | + const OutT shm[128][129], |
| 103 | + size_t K) { |
| 104 | + for (size_t i = 0; i < 4; i++) { |
| 105 | + size_t idx_m = blockIdx.x * 128 + threadIdx.x * 4; |
| 106 | + size_t idx_k = blockIdx.y * 128 + threadIdx.y + i * 32; |
| 107 | + size_t idx = idx_k * cur_tokens + (idx_m - off_m); |
| 108 | + |
| 109 | + if (idx_k < K) { |
| 110 | + using StoreT = VecType<OutT, VecSize>; |
| 111 | + StoreT data; |
| 112 | + for (int j = 0; j < VecSize; j++) { |
| 113 | + data[j] = shm[i * 32 + threadIdx.y][threadIdx.x * 4 + j]; |
| 114 | + } |
| 115 | + *reinterpret_cast<StoreT*>(out + idx) = data; |
| 116 | + } |
| 117 | + } |
| 118 | +} |
| 119 | + |
| 120 | +template <typename OutT, bool Pow2Scales, int VecSize> |
| 121 | +__global__ void __launch_bounds__(1024) |
| 122 | + FusedTransposeSplitQuantKernel(const phi::bfloat16* __restrict__ X, |
| 123 | + int64_t* __restrict__ meta, |
| 124 | + size_t num_experts, |
| 125 | + size_t K) { |
| 126 | + __shared__ OutT shm[128][129]; |
| 127 | + int64_t* tokens_per_expert = meta; |
| 128 | + OutT** out_ptrs = reinterpret_cast<OutT**>(meta + num_experts); |
| 129 | + float** scale_ptrs = reinterpret_cast<float**>(meta + num_experts * 2); |
| 130 | + |
| 131 | + // Get expert_idx and offset at the M dim of the current block |
| 132 | + size_t idx_m = blockIdx.x * 128 + threadIdx.x * 4; |
| 133 | + size_t off_m = 0, next_off_m = 0; |
| 134 | + size_t expert_idx; |
| 135 | + for (expert_idx = 0; expert_idx < num_experts; expert_idx++) { |
| 136 | + next_off_m += tokens_per_expert[expert_idx]; |
| 137 | + if (idx_m >= off_m && idx_m < next_off_m) { |
| 138 | + break; |
| 139 | + } |
| 140 | + off_m = next_off_m; |
| 141 | + } |
| 142 | + |
| 143 | + // Load 128x128 elements from X |
| 144 | + __nv_bfloat16 input[4][4]; |
| 145 | + BlockLoad<VecSize>(X, input, K); |
| 146 | + |
| 147 | + // Find the maximum of each 128 elements on the M axis |
| 148 | + __nv_bfloat16 amax[4]; |
| 149 | + BlockColumnMax(input, amax, reinterpret_cast<__nv_bfloat16*>(shm)); |
| 150 | + |
| 151 | + // Compute scale and scale_inv, then store scale back |
| 152 | + float scale_inv[4]; |
| 153 | + BlockStoreScale<OutT, Pow2Scales, VecSize>( |
| 154 | + scale_ptrs[expert_idx], off_m, amax, scale_inv, K); |
| 155 | + |
| 156 | + // Scale X and save into shared memory with transposed layout |
| 157 | + for (int i = 0; i < 4; i++) { |
| 158 | + for (int j = 0; j < 4; j += VecSize) { |
| 159 | + for (int k = 0; k < VecSize; k++) { |
| 160 | + float input_fp32 = static_cast<float>(input[i][j + k]); |
| 161 | + float output_scaled = input_fp32 * scale_inv[j + k]; |
| 162 | + shm[threadIdx.x * VecSize + j * 32 + k][i * 32 + threadIdx.y] = |
| 163 | + static_cast<OutT>(output_scaled); |
| 164 | + } |
| 165 | + } |
| 166 | + } |
| 167 | + __syncthreads(); |
| 168 | + |
| 169 | + // Store 128x128 elements back |
| 170 | + // Note: out is always 4x vectorizable. |
| 171 | + BlockStoreOut<OutT, 4>( |
| 172 | + out_ptrs[expert_idx], off_m, tokens_per_expert[expert_idx], shm, K); |
| 173 | +} |
| 174 | + |
| 175 | +/** |
| 176 | + * Quantize on dim[0] of X, transpose dim[0] and dim[1] of X, then |
| 177 | + * split the result into out and scale. |
| 178 | + * |
| 179 | + * Inputs: |
| 180 | + * X : [SUM(M_1...M_N), K], bfloat16 |
| 181 | + * |
| 182 | + * Outputs: |
| 183 | + * out : {[K, M_1], [K, M_2], ..., [K, M_N]}, float8_e4m3fn |
| 184 | + * scale : {[M_1/128, K], [M_2/128, K], ..., [M_N/128, K]}, float |
| 185 | + * |
| 186 | + * Attrs: |
| 187 | + * pow_2_scales |
| 188 | + * : bool that indicates whether to use power-of-2 scaling |
| 189 | + * |
| 190 | + * Requirements: |
| 191 | + * 1) M_i % 128 == 0 for M_i in [M_1, M_2, ..., M_N] |
| 192 | + * 2) K <= 65535 * 128 |
| 193 | + */ |
| 194 | +void fused_transpose_split_quant(const paddle::Tensor& X, |
| 195 | + std::vector<paddle::Tensor>& outs, |
| 196 | + std::vector<paddle::Tensor>& scales, |
| 197 | + bool pow_2_scales) { |
| 198 | + // Check X |
| 199 | + PD_CHECK(X.dtype() == paddle::DataType::BFLOAT16); |
| 200 | + |
| 201 | + std::vector<int64_t> shape = X.shape(); |
| 202 | + PD_CHECK(shape.size() == 2); |
| 203 | + const int64_t M = shape[0]; |
| 204 | + const int64_t K = shape[1]; |
| 205 | + |
| 206 | + // Check outs and scales |
| 207 | + const size_t num_experts = outs.size(); |
| 208 | + PD_CHECK(scales.size() == num_experts); |
| 209 | + |
| 210 | + std::vector<int64_t> tokens_per_expert; |
| 211 | + int64_t sum_tokens = 0; |
| 212 | + for (size_t i = 0; i < num_experts; i++) { |
| 213 | + PD_CHECK(outs[i].dtype() == paddle::DataType::FLOAT8_E4M3FN); |
| 214 | + PD_CHECK(scales[i].dtype() == paddle::DataType::FLOAT32); |
| 215 | + |
| 216 | + std::vector<int64_t> out_shape = outs[i].shape(); |
| 217 | + PD_CHECK(out_shape.size() == 2); |
| 218 | + PD_CHECK(out_shape[0] == K); |
| 219 | + PD_CHECK(out_shape[1] % 128 == 0); |
| 220 | + tokens_per_expert.push_back(out_shape[1]); |
| 221 | + sum_tokens += out_shape[1]; |
| 222 | + |
| 223 | + std::vector<int64_t> scale_shape = scales[i].shape(); |
| 224 | + PD_CHECK(scale_shape.size() == 2); |
| 225 | + PD_CHECK(scale_shape[0] == out_shape[1] / 128); |
| 226 | + PD_CHECK(scale_shape[1] == K); |
| 227 | + } |
| 228 | + |
| 229 | + PD_CHECK(sum_tokens == M, |
| 230 | + "sum of out[i].shape[1] must be equal to X.shape[0]"); |
| 231 | + PD_CHECK(K <= 65535 * 128, "only supports K <= 65535 * 128"); |
| 232 | + |
| 233 | + // Skip 0-size |
| 234 | + if (M == 0 || K == 0) { |
| 235 | + return; |
| 236 | + } |
| 237 | + |
| 238 | + // Copy meta (tokens_per_expert, out_ptrs, scale_ptrs) to device |
| 239 | + paddle::Tensor meta_cpu = paddle::empty( |
| 240 | + {static_cast<int64_t>(num_experts * 3)}, paddle::DataType::INT64); |
| 241 | + int64_t* meta_ptr = meta_cpu.data<int64_t>(); |
| 242 | + for (size_t i = 0; i < num_experts; i++) { |
| 243 | + meta_ptr[i] = static_cast<int64_t>(tokens_per_expert[i]); |
| 244 | + } |
| 245 | + for (size_t i = 0; i < num_experts; i++) { |
| 246 | + meta_ptr[num_experts + i] = |
| 247 | + reinterpret_cast<int64_t>(outs[i].data<phi::float8_e4m3fn>()); |
| 248 | + } |
| 249 | + for (size_t i = 0; i < num_experts; i++) { |
| 250 | + meta_ptr[num_experts * 2 + i] = |
| 251 | + reinterpret_cast<int64_t>(scales[i].data<float>()); |
| 252 | + } |
| 253 | + paddle::Tensor meta_gpu = meta_cpu.copy_to(X.place(), /*blocking=*/false); |
| 254 | + |
| 255 | + // Launch kernel |
| 256 | + dim3 grid(M / 128, (K + 127) / 128); |
| 257 | + dim3 block(32, 32); |
| 258 | + |
| 259 | +#define LAUNCH_KERNEL(POW_2_SCALES, VEC_SIZE) \ |
| 260 | + FusedTransposeSplitQuantKernel<phi::float8_e4m3fn, POW_2_SCALES, VEC_SIZE> \ |
| 261 | + <<<grid, block>>>( \ |
| 262 | + X.data<phi::bfloat16>(), meta_gpu.data<int64_t>(), num_experts, K); |
| 263 | +#define LAUNCH_KERNEL_PARTIAL(VEC_SIZE) \ |
| 264 | + if (pow_2_scales) { \ |
| 265 | + LAUNCH_KERNEL(true, VEC_SIZE); \ |
| 266 | + } else { \ |
| 267 | + LAUNCH_KERNEL(false, VEC_SIZE); \ |
| 268 | + } |
| 269 | + |
| 270 | + if (K % 4 == 0) { |
| 271 | + LAUNCH_KERNEL_PARTIAL(4); |
| 272 | + } else if (K % 2 == 0) { |
| 273 | + LAUNCH_KERNEL_PARTIAL(2); |
| 274 | + } else { |
| 275 | + LAUNCH_KERNEL_PARTIAL(1); |
| 276 | + } |
| 277 | +#undef LAUNCH_KERNEL_PARTIAL |
| 278 | +#undef LAUNCH_KERNEL |
| 279 | +} |
| 280 | + |
| 281 | +PD_BUILD_OP(fused_transpose_split_quant) |
| 282 | + .Inputs({"X", paddle::Vec("outs"), paddle::Vec("scales")}) |
| 283 | + .Attrs({"pow_2_scales: bool"}) |
| 284 | + .SetKernelFn(PD_KERNEL(fused_transpose_split_quant)); |
0 commit comments