Skip to content

[llm] support tensorwise fp8/int8 training #10612

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 23 commits into from
Jun 5, 2025
Merged
Show file tree
Hide file tree
Changes from 17 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion llm/run_finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,13 @@ def main():
qlora_weight_blocksize=model_args.qlora_weight_blocksize,
qlora_weight_double_quant=model_args.qlora_weight_double_quant,
qlora_weight_double_quant_block_size=model_args.qlora_weight_double_quant_block_size,
apply_hadamard=model_args.apply_hadamard,
hadamard_block_size=model_args.hadamard_block_size,
quant_input_grad=model_args.quant_input_grad,
quant_weight_grad=model_args.quant_weight_grad,
apply_online_actscale_step=model_args.apply_online_actscale_step,
actscale_moving_rate=model_args.actscale_moving_rate,
fp8_format_type=model_args.fp8_format_type,
)

model_config = AutoConfig.from_pretrained(
Expand Down Expand Up @@ -445,7 +452,9 @@ def compute_metrics_do_generation(eval_preds):
gen_args=gen_args,
data_args=data_args,
)
trainable_parameters = [p for p in model.parameters() if not p.stop_gradient]
trainable_parameters = [
p for p in model.parameters() if not p.stop_gradient or ("quantization_linear" in p.name and "w_1" in p.name)

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的hardcode可以避免吗?或者如何保证一定生效?至少需要有log提示

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

暂时没有更好的写法,因为scale是stop_gradient,但需要传入optimizer的参数

]
trainer.set_optimizer_grouped_parameters(trainable_parameters)

# Train
Expand Down
59 changes: 41 additions & 18 deletions paddlenlp/quantization/hadamard_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@

import paddle

from paddlenlp.utils import infohub


def matmul_hadU(X):

Expand All @@ -31,22 +33,43 @@
return input.reshape(X.shape)


def random_hadamard_matrix(size, dtype, is_block=False):
if not is_block:
A = paddle.randint(low=0, high=2, shape=[size, size]).astype("float32") * 2 - 1
Q, _ = paddle.linalg.qr(A)
return Q.astype(dtype), 1
def random_hadamard_matrix(block_size, dtype):
Q = paddle.diag(paddle.ones((block_size), dtype=dtype))
block = matmul_hadU(Q)
return block

Check warning on line 39 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L37-L39

Added lines #L37 - L39 were not covered by tests


def create_hadamard_matrix(block_size, dtype):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

和前面random_hadamard_matrix的区别是什么

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已删除

Q = paddle.diag(paddle.ones((block_size), dtype=dtype))
block = matmul_hadU(Q)
return block

Check warning on line 45 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L43-L45

Added lines #L43 - L45 were not covered by tests


def hadamard_matmul(input, side, hadamard_matrix, block_size):
# left -> H.T@input right -> input@H
origin_shape = input.shape
input = input.reshape([-1, origin_shape[-1]])
if side == "left":

Check warning on line 52 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L50-L52

Added lines #L50 - L52 were not covered by tests
# H.T@input -> (input.T@H).T
input = input.transpose([1, 0])
block_num = input.shape[-1] // block_size
output = input.reshape([-1, block_num, block_size]) @ hadamard_matrix
output = output.reshape([-1, block_num * block_size])
if side == "left":
output = output.transpose([1, 0])
output = output.reshape(origin_shape)

Check warning on line 60 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L54-L60

Added lines #L54 - L60 were not covered by tests

return output

Check warning on line 62 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L62

Added line #L62 was not covered by tests


def apply_hadamard_matmul(x, side, block_size):
if getattr(infohub, "hadamard") is None:
setattr(infohub, "hadamard", {})

Check warning on line 67 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L66-L67

Added lines #L66 - L67 were not covered by tests

if block_size in infohub.hadamard:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

hadamard_matrix 没有默认值的话,没有命中该分支会出问题

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

infohub.hadamard 默认值是{}

hadamard_matrix = infohub.hadamard[block_size]

Check warning on line 70 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L69-L70

Added lines #L69 - L70 were not covered by tests
else:
num_blocks = size
while not (num_blocks % 2):
num_blocks = num_blocks // 2
block_size = size // num_blocks
Q = paddle.diag(paddle.ones((block_size,), dtype="float32"))
block = matmul_hadU(Q)
large_matrix = paddle.zeros([size, size])

for i in range(num_blocks):
start_row = i * block_size
start_col = i * block_size
large_matrix[start_row : start_row + block_size, start_col : start_col + block_size] = block
return large_matrix.cast(dtype), block_size
hadamard_matrix = create_hadamard_matrix(block_size, x.dtype)
infohub.hadamard[block_size] = hadamard_matrix
target_x = hadamard_matmul(x, side, hadamard_matrix, block_size)
return target_x

Check warning on line 75 in paddlenlp/quantization/hadamard_utils.py

View check run for this annotation

Codecov / codecov/patch

paddlenlp/quantization/hadamard_utils.py#L72-L75

Added lines #L72 - L75 were not covered by tests
Loading